32 research outputs found

    Nutrition-risk pregnancies and its association with birth outcomes: findings from a community-based intervention in India

    Get PDF
    Background: The intervention is a part of a maternal and child nutrition project, operational in three districts of West Bengal, India. The current paper focuses on the identification of “nutrition risk pregnancies” at the community level and to determine the associations of the risk factors with birth outcomes like low-birth weight and pre-term birth.Methods: A cohort of 468 pregnant women attending antenatal clinics in their 1st trimester were identified from 74 sub-health centers from 3 diversified blocks of West Bengal, India. Five key intervention strategies were followed in order to achieve desired pregnancy weight gain birth outcomes, like low-birth weight, pre-term birth was analyzed in relation to “nutrition risk pregnancies”.Results: About 22.2% of the pregnant women in severe thin body mass index (BMI) categories gave birth to low-birth weight children and about 33.3% had pre-term deliveries compared to pregnant women with normal BMI with 16.8% and 18.8% low-birth and pre-term deliveries respectively. Among the nutrition risk factors, 1st weight at the time of pregnancy registration (95% CI, p=0.04), gestational weight gain (95% CI, p=0.002), were significantly associated with low-birth weight children. Gestational weight gain was also significantly associated with pre-term births (95% CI, p=0.009).Conclusions: Gestational weight gain beyond or less than recommended range may pre-dispose to low-birth weight and pre-term births. Since this factor could be managed through the existing, public health service delivery systems and family-based inputs, efforts should be geared towards identifying the risk factors and working towards appropriate weight gain.

    New physics implications of VBF searches exemplified through the Georgi-Machacek model

    Full text link
    LHC searches for nonstandard scalars in vector boson fusion (VBF) production processes can be particularly efficient in probing scalars belonging to triplet or higher multiplet representations of the Standard Model SU(2)LSU(2)_L gauge group. They can be especially relevant for models where the additional scalars do not have any tree-level couplings to the Standard Model fermions, rendering VBF as their primary production mode at the LHC. In this work, we employ the latest LHC data from VBF resonance searches to constrain the properties of nonstandard scalars, taking the Georgi-Machacek model as a prototypical example. We take into account the theoretical constraints on the potential from unitarity and boundedness-from-below as well as indirect constraints coming from the signal strength measurements of the 125 GeV Higgs boson at the LHC. To facilitate the phenomenological analysis we advocate a convenient reparametrization of the trilinear couplings in the scalar potential. We derive simple correlations among the model parameters corresponding to the decoupling limit of the model. We explicitly demonstrate how a combination of theoretical and phenomenological constraints can push the GM model towards the decoupling limit. Our analysis suggests that the VBF searches can provide key insights into the composition of the electroweak vacuum expectation value.Comment: 17 pages, 7 figure

    Coping the arsenic toxicity in rice plant with magnesium addendum for alluvial soil of indo-gangetic Bengal, India

    Get PDF
    Arsenic (As3+) is a toxic metalloid found in the earth’s crust, its elevated concentration is a concern for human health because rice is the staple grain in eastern part of India and the waterlogged rice field environment provides opportunity for more As3+ uptake. Magnesium (Mg2+) is an important plant nutrient. Present work is a search for reducing As3+ toxicity in plants through Mg2+ application. The findings are quite impressive, the root to shoot biomass ratio showed more than 1.5 times increase compared to the control. Total protein content increased 2 folds. Carbohydrate and chlorophyll content increased two to three times compared to control. On the other hand, Malondialdehyde content showed a decline with the application of increased Mg2+ dose. The in-silico study shows a better interaction with As3+ in presence of Mg2+ but interestingly without stress symptoms. These findings from the research indicate that Mg2+ application can be effective in reducing As3+ induced stress in plants

    Prevalence of extended-spectrum beta-lactamases producing isolates obtained from patients of pediatric critical care unit in a tertiary care hospital

    Get PDF
    Background: Over the past decades, antibiotic-resistant Gram-negative bacteria commonly Enterobacteriaceae such as Escherichia coli and Klebsiella pneumoniae have increased significantly. These microorganisms have great clinical importance because they increase hospital stay of the patients in the intensive care unit (ICU) leading to high morbidity and mortality. Because of their role in increasing morbidity and mortality, this study was performed to isolate extended-spectrum beta-lactamase (ESBL) producing Gram-negative bacilli screened by phenotypical method and further projected into molecular characterization by polymerase chain reaction. Aims and Objectives: The aims and objectives are to isolate the Gram-negative multidrug-resistant strains from clinically suspected bacterial infections in patients of neonatal, sick newborn, and pediatric ICU and to study antibiotic sensitivity pattern of isolated Gram-negative multidrug-resistant strains with special reference to molecular characterization. Materials and Methods: A total of 100 Gram-negative bacilli were isolated. Screening of ESBL positivity was done by double-disk synergy test (combined disc test method). Their antibiogram profile was interpreted. With the use of designed primers, 26 ESBL isolates each of E. coli and Klebsiella spp. were processed for molecular analysis of beta-lactamase family genes TEM and CTX-M. Results: Within the 100 samples, majority of the isolates (45%) were Klebsiella spp. and 40% was E. coli isolates. Highest ESBL-producing organisms were observed within E. coli (65%). Prevalence bla-TEM gene was highest followed by bla-CTX-M. These ESBL-producing organisms were found to be resistant to multiple classes of antibiotics. With extensive ESBL surveillance and proper usage of antibiotics, this threatening rise of antibiotic resistance can be mitigated. Conclusion: Gram-negative isolates showed high resistance to commonly used antibiotics. Significant proportions of them were MDR strains. Such high antibiotic resistance is associated with significant morbidity and mortality among pediatric population. MDR along with possession of ESBL associated resistance genes among Gram-negative bacilli pose a serious problem in therapeutic management of patients. Our study signifies that there is a high probability of Gram- negative bacilli to be multi-drug resistant and ESBL positive and earliest detection of such cases should be made

    The Effects of Dual IQOS and Cigarette Smoke Exposure on Airway Epithelial Cells: Implications for Lung Health and Respiratory Disease Pathogenesis

    Get PDF
    Background Cigarette smoking remains a primary cause of chronic lung diseases. After a steady decline, smoking rates have recently increased especially with the introduction of newer electronic nicotine delivery devices, and it is also emerging that dual- or poly-product usage is on the rise. Additionally, with the introduction of IQOS (a heated tobacco product) globally, its impact on human health needs to be investigated. In this study we tested if dual exposure (cigarette smoke (CS)+IQOS) is detrimental to lung epithelial cells when compared with CS or IQOS exposure alone. Methods Human airway epithelial cells (BEAS-2B) were exposed to either CS, IQOS or their dual combination (CS+IQOS) at concentrations of 0.1%, 1.0%, 2.5% and 5.0%. Cytotoxicity, oxidative stress, mitochondrial homeostasis, mitophagy and effects on epithelial–mesenchymal transition (EMT) signalling were assessed. Results Both CS and IQOS alone significantly induced loss of cell viability in a concentration-dependent manner which was further enhanced by dual exposure compared with IQOS alone (p\u3c0.01). Dual exposure significantly increased oxidative stress and perturbed mitochondrial homeostasis when compared with CS or IQOS alone (p\u3c0.05). Additionally, dual exposure induced EMT signalling as shown by increased mesenchymal (α-smooth muscle actin and N-cadherin) and decreased epithelial (E-cadherin) markers when compared with CS or IQOS alone (p\u3c0.05). Conclusion Collectively, our study demonstrates that dual CS+IQOS exposure enhances pathogenic signalling mediated by oxidative stress and mitochondrial dysfunction leading to EMT activation, which is an important regulator of small airway fibrosis in obstructive lung diseases

    Monitoring Coil–Globule Transitions of Thermoresponsive Polymers by Using NMR Solvent Relaxation

    No full text
    Thermoresponsive polymers exhibit coil–globule transition in aqueous solution where the polymer undergoes transition from the coil-like morphology to a globular form with the change of temperature. Such transitions also reflect changes in the solvent dynamics captured by various spectroscopic methods. In this work, we construct a phenomenological model to capture the dynamics of the NMR relaxation of water molecules of an aqueous solution of thermoresponsive polymers that are known to form hydrogen bonds with the solvent water molecules. The model relies on the behavior of the polymer–solvent hydrogen bonds and the sharing of rotational kinetic energy of water molecules in the vicinity of the polymer chain and the bulk. This is shown to provide a direct estimate of the fractional change of the polymer–water hydrogen bonds across lower critical solution temperature from NMR relaxation data of solvent water along with a reliable estimate of the transition temperature. In addition, it also provides a measure of the dispersion of the strengths of these hydrogen bonds. We exemplify the validity of this model by successfully fitting the experimental data to show that the extracted parameters provide significant insights into the role played by the hydrogen bonds in the process. The possible extension of this model to solvents that form no hydrogen bonds with the polymers is also discussed

    The effects of dual IQOS and cigarette smoke exposure on airway epithelial cells: implications for lung health and respiratory disease pathogenesis

    No full text
    Background Cigarette smoking remains a primary cause of chronic lung diseases. After a steady decline, smoking rates have recently increased especially with the introduction of newer electronic nicotine delivery devices, and it is also emerging that dual- or poly-product usage is on the rise. Additionally, with the introduction of IQOS (a heated tobacco product) globally, its impact on human health needs to be investigated. In this study we tested if dual exposure (cigarette smoke (CS)+IQOS) is detrimental to lung epithelial cells when compared with CS or IQOS exposure alone. Methods Human airway epithelial cells (BEAS-2B) were exposed to either CS, IQOS or their dual combination (CS+IQOS) at concentrations of 0.1%, 1.0%, 2.5% and 5.0%. Cytotoxicity, oxidative stress, mitochondrial homeostasis, mitophagy and effects on epithelial–mesenchymal transition (EMT) signalling were assessed. Results Both CS and IQOS alone significantly induced loss of cell viability in a concentration-dependent manner which was further enhanced by dual exposure compared with IQOS alone (p<0.01). Dual exposure significantly increased oxidative stress and perturbed mitochondrial homeostasis when compared with CS or IQOS alone (p<0.05). Additionally, dual exposure induced EMT signalling as shown by increased mesenchymal (α-smooth muscle actin and N-cadherin) and decreased epithelial (E-cadherin) markers when compared with CS or IQOS alone (p<0.05). Conclusion Collectively, our study demonstrates that dual CS+IQOS exposure enhances pathogenic signalling mediated by oxidative stress and mitochondrial dysfunction leading to EMT activation, which is an important regulator of small airway fibrosis in obstructive lung diseases

    Thyroid status in patients with Type 2 diabetes attending a Tertiary Care Hospital in Eastern India

    No full text
    Objective: Type 2 diabetes mellitus and thyroid dysfunction (TD) are two major public health endocrine problem, but the prevalence of TD and iodine status in patients with T2 DM in India is less studied. The study objective was to explore the prevalence of TD and to evaluate iodine health in type 2 diabetes patients attending a tertiary care center in Eastern India. Methods: Consecutive 100 patients with diabetes attending outpatient department were evaluated clinically and biochemically (thyrotropin [TSH], free thyroxine, anti-TPO antibody, and urinary iodine). We excluded pregnant women or patients taking drugs that can alter thyroid function. Subclinical hypothyroid and overt hypothyroidism were diagnosed as per standard definitions. Results: Out of 100 patients were analyzed, 51 (51%) were male. Mean (±standard deviation) age was 45.4 ± 11.2 years, body mass index 24.1 ± 4.28 kg/m2, and duration of diabetes 7.76 ± 5.77 years. The prevalence of subclinical hypothyroidism and overt hypothyroidism was 23/100 (23%) and 3/100 (3%), respectively. Thyroid autoantibody was positive in 13 (13.1%) patients. All patients were iodine sufficient. A trend toward increased neuropathy (r = 0.45) and nephropathy (r = −0.29) was associated with rising TSH. Conclusion: Almost one in four people living with diabetes are suffering from TD. Thus, routine screening should be implemented. Salt iodination program is a huge success in this part of the country

    A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System

    Get PDF
    Cytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans
    corecore