1,407 research outputs found

    Nonlinear fluctuations and dissipation in matter revealed by quantum light

    Full text link
    Quantum optical fields offer numerous control knobs which are not available with classical light and may be used for monitoring the properties of matter by novel types of spectroscopy. It has been recently argued that such quantum spectroscopy signals can be obtained by a simple averaging of their classical spectroscopy counterparts over the Glauber-Sudarshan quasiprobability distribution of the quantum field; the quantum light thus merely provides a novel gating window for the classical response functions. We show that this argument only applies to the linear response and breaks down in the nonlinear regime. The quantum response carries additional valuable information about response and spontaneous fluctuations of matter that may not be retrieved from the classical response by simple data processing. This is connected to the lack of a nonlinear fluctuation-dissipation relation

    Supercoil formation in DNA denaturation

    Full text link
    We generalize the Poland-Scheraga (PS) model to the case of a circular DNA, taking into account the twisting of the two strains around each other. Guided by recent single-molecule experiments on DNA strands, we assume that the torsional stress induced by denaturation enforces formation of supercoils whose writhe absorbs the linking number expelled by the loops. Our model predicts that, when the entropy parameter of a loop satisfies c2c \le 2, denaturation transition does not take place. On the other hand for c>2c>2 a first-order denaturation transition is consistent with our model and may take place in the actual system, as in the case with no supercoils. These results are in contrast with other treatments of circular DNA melting where denaturation is assumed to be accompanied by an increase in twist rather than writhe on the bound segments.Comment: 4 pages, 3 figures, accepted for publication in PRE Rapid Com

    Quantum phase-sensitive diffraction and imaging using entangled photons

    Full text link
    We propose a novel quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as Ip1/2\propto I_{p}^{1/2}, where IpI_{p} is the source intensity, compared to Ip\propto I_{p} of classical diffraction. This makes imaging with weak-field possible, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions.Comment: In pres

    Condensation and coexistence in a two-species driven model

    Full text link
    Condensation transition in two-species driven systems in a ring geometry is studied in the case where current-density relation of a domain of particles exhibits two degenerate maxima. It is found that the two maximal current phases coexist both in the fluctuating domains of the fluid and in the condensate, when it exists. This has a profound effect on the steady state properties of the model. In particular, phase separation becomes more favorable, as compared with the case of a single maximum in the current-density relation. Moreover, a selection mechanism imposes equal currents flowing out of the condensate, resulting in a neutral fluid even when the total number of particles of the two species are not equal. In this case the particle imbalance shows up only in the condensate

    Evaluation of optical probe signals from nonequilibrium systems

    Full text link
    We predict several effects associated with the optical response of systems prepared in a nonequilibrium state by impulsive optical excitations. The linear response depends on the phase of the electric field even if the initial nonequilirbium state has only populations, no coherences. Initial quantum coherences induce additional phase dependence which also shows new resonances in nonlinear wave mixing. In systems strongly driven by an external optical field, the field frequency generates a phase dependent probe absorption. This gives further control to manipulate the relative contribution to the linear signal due to initial populations and coherences

    Photon Statistics for Single Molecule Non-Linear Spectroscopy

    Full text link
    We consider the theory of the non-linear spectroscopy for a single molecule undergoing stochastic dynamics and interacting with a sequence of two laser pulses. General expressions for photon counting statistics are obtained, and an exact solution to the problem of the Kubo-Anderson process is found. In the limit of impulsive pulses the information on the photon statistics is contained in the molecule's dipole correlation function. The selective limit where temporal resolution is maintained, the semi-classical approximation and the fast modulation limit exhibit general behaviors of this new type of spectroscopy. We show how the design of the external field leads to rich insights on dynamics of individual molecules which are different than those found for an ensemble

    Time-resolved broadband Raman spectroscopies; A unified six-wave-mixing representation

    Get PDF
    Excited-state vibrational dynamics in molecules can be studied by an electronically off-resonant Raman process induced by a probe pulse with variable delay with respect to an actinic pulse. We establish the connection between several variants of the technique that involve either spontaneous or stimulated Raman detection and different pulse configurations. By using loop diagrams in the frequency domain we show that all signals can be described as six wave mixing which depend on the same four point molecular correlation functions involving two transition dipoles and two polarizabilities and accompanied by a different gating. Simulations for the stochastic two-state-jump model illustrate the origin of the absorptive and dispersive features observed experimentally
    corecore