We consider the theory of the non-linear spectroscopy for a single molecule
undergoing stochastic dynamics and interacting with a sequence of two laser
pulses. General expressions for photon counting statistics are obtained, and an
exact solution to the problem of the Kubo-Anderson process is found. In the
limit of impulsive pulses the information on the photon statistics is contained
in the molecule's dipole correlation function. The selective limit where
temporal resolution is maintained, the semi-classical approximation and the
fast modulation limit exhibit general behaviors of this new type of
spectroscopy. We show how the design of the external field leads to rich
insights on dynamics of individual molecules which are different than those
found for an ensemble