Condensation transition in two-species driven systems in a ring geometry is
studied in the case where current-density relation of a domain of particles
exhibits two degenerate maxima. It is found that the two maximal current phases
coexist both in the fluctuating domains of the fluid and in the condensate,
when it exists. This has a profound effect on the steady state properties of
the model. In particular, phase separation becomes more favorable, as compared
with the case of a single maximum in the current-density relation. Moreover, a
selection mechanism imposes equal currents flowing out of the condensate,
resulting in a neutral fluid even when the total number of particles of the two
species are not equal. In this case the particle imbalance shows up only in the
condensate