2,696 research outputs found

    Neuroimaging as a selection tool and endpoint in preclinical and clinical trials

    Get PDF
    Standard imaging in acute stroke enables the exclusion of non-stroke structural CNS lesions and cerebral haemorrhage from clinical and pre-clinical ischaemic stroke trials. In this review, the potential benefit of imaging (e.g., angiography and penumbral imaging) as a translational tool for trial recruitment and the use of imaging endpoints are discussed for both clinical and pre-clinical stroke research. The addition of advanced imaging to identify a “responder” population leads to reduced sample size for any given effect size in phase 2 trials and is a potentially cost-efficient means of testing interventions. In pre-clinical studies, technical failures (failed or incomplete vessel occlusion, cerebral haemorrhage) can be excluded early and continuous multimodal imaging of the animal from stroke onset is feasible. Pre- and post-intervention repeat scans provide real time assessment of the intervention over the first 4–6 h. Negative aspects of advanced imaging in animal studies include increased time under general anaesthesia, and, as in clinical studies, a delay in starting the intervention. In clinical phase 3 trial designs, the negative aspects of advanced imaging in patient selection include higher exclusion rates, slower recruitment, overestimated effect size and longer acquisition times. Imaging may identify biological effects with smaller sample size and at earlier time points, compared to standard clinical assessments, and can be adjusted for baseline parameters. Mechanistic insights can be obtained. Pre-clinically, multimodal imaging can non-invasively generate data on a range of parameters, allowing the animal to be recovered for subsequent behavioural testing and/or the brain taken for further molecular or histological analysis

    Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats

    Get PDF
    Background: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. Methods: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. Results: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. Conclusions: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear

    Lincoln University entomological expedition to Pitt Island

    Get PDF
    The expedition had two objectives: 1. To search for the Pitt Island longhorn beetle, Xylotoles costatus and determine its distribution, abundance and conservation status. 2. To undertake general entomological survey work, particularly in the orders Coleoptera, Diptera, Lepidoptera and Hymenoptera by using trapping methods not previously used on Pitt Island

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 2. Validation based on the consequences of reperfusion

    Get PDF
    Magnetic resonance imaging (MRI) with oxygen challenge (T2* OC) uses oxygen as a metabolic biotracer to define penumbral tissue based on CMRO2 and oxygen extraction fraction. Penumbra displays a greater T2* signal change during OC than surrounding tissue. Since timely restoration of cerebral blood flow (CBF) should salvage penumbra, T2* OC was tested by examining the consequences of reperfusion on T2* OC-defined penumbra. Transient ischemia (109±20 minutes) was induced in male Sprague-Dawley rats (n=8). Penumbra was identified on T2*-weighted MRI during OC. Ischemia and ischemic injury were identified on CBF and apparent diffusion coefficient maps, respectively. Reperfusion was induced and scans repeated. T2 for final infarct and T2* OC were run on day 7. T2* signal increase to OC was 3.4% in contralateral cortex and caudate nucleus and was unaffected by reperfusion. In OC-defined penumbra, T2* signal increased by 8.4%±4.1% during ischemia and returned to 3.25%±0.8% following reperfusion. Ischemic core T2* signal increase was 0.39%±0.47% during ischemia and 0.84%±1.8% on reperfusion. Penumbral CBF increased from 41.94±13 to 116.5±25 mL per 100 g per minute on reperfusion. On day 7, OC-defined penumbra gave a normal OC response and was located outside the infarct. T2* OC-defined penumbra recovered when CBF was restored, providing further validation of the utility of T2* OC for acute stroke management

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. validation using [14C]2-deoxyglucose autoradiography

    Get PDF
    Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T2* MRI (T2* OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T2* signal change during OC. [14C]2-deoxyglucose (2-DG) autoradiography was combined with T2* OC to determine metabolic status of T2*-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147±32 minutes after stroke, T2* signal change was measured during a 5-minute 100% OC, immediately followed by 125 ΌCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T2*-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T2* signal increase of 9.22%±3.9% (mean±s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T2* signal change was negligible in ischemic core, 3.2%±0.78% in contralateral regions, and 1.41%±0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue follow

    Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra

    Get PDF
    We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin:deoxyhemoglobin ratios and T2* signal change during ‘oxygen challenge’ (OC, 5 mins 100% O2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n=5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n=5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronal morphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm

    Full text link
    The discrete-time Toda equation arises as a universal equation for the relevant Hankel determinants associated with one-variable orthogonal polynomials through the mechanism of adjacency, which amounts to the inclusion of shifted weight functions in the orthogonality condition. In this paper we extend this mechanism to a new class of two-variable orthogonal polynomials where the variables are related via an elliptic curve. This leads to a `Higher order Analogue of the Discrete-time Toda' (HADT) equation for the associated Hankel determinants, together with its Lax pair, which is derived from the relevant recurrence relations for the orthogonal polynomials. In a similar way as the quotient-difference (QD) algorithm is related to the discrete-time Toda equation, a novel quotient-quotient-difference (QQD) scheme is presented for the HADT equation. We show that for both the HADT equation and the QQD scheme, there exists well-posed ss-periodic initial value problems, for almost all \s\in\Z^2. From the Lax-pairs we furthermore derive invariants for corresponding reductions to dynamical mappings for some explicit examples.Comment: 38 page

    On the tau-functions of the Degasperis-Procesi equation

    Full text link
    The DP equation is investigated from the point of view of determinant-pfaffian identities. The reciprocal link between the Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the C∞C_{\infty} two-dimensional Toda system is used to construct the N-soliton solution of the DP equation. The N-soliton solution of the DP equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations, the identities between determinants and pfaffians, and the τ\tau-functions of the DP equation are obtained from the pseudo 3-reduction of the C∞C_{\infty} two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and Theoretical, to be publishe

    A shower before bedtime may improve the sleep onset latency of youth soccer players.

    Get PDF
    During the competitive season, soccer players are likely exposed to numerous factors that may disrupt the process of sleep. The current investigation looked to evaluate a practical sleep hygiene strategy (10-min showering at ∌40°C before lights out), within a group of 11 youth soccer players in comparison to normal sleeping conditions (control). Each condition consisted of three days within a randomised crossover trial design. Sleep information was collected using a commercial wireless bedside sleep monitor. Measures of skin temperature were evaluated using iButton skin thermistors to establish both distal and proximal skin temperatures and distal to proximal gradient. The shower intervention elevated distal skin temperature by 1.1°C (95% CI: 0.1-2.1°C, p = .04) on average prior to lights out. The elevation in distal temperature was also present during the first 30-min following lights out (1.0°C, 95% CI: 0.4-1.6°C, p < .01). The distal to proximal gradient also showed a significant effect between the conditions within the first 30-min after lights out (0.7°C, 95% CI: 0.3-1.2°C, p < .01). On average the sleep latency of the youth soccer players was -7-min lower (95% CI: -13 to -2 min, p < .01) and sleep efficiency +2% higher (95% CI: 1-3%; p < .01) in the shower condition. These findings demonstrate that a warm shower performed before lights out may offer a practical strategy to promote thermoregulatory changes that may advance sleep onset latency and improve sleep efficiency in athletes
    • 

    corecore