236 research outputs found

    Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses

    No full text
    We report the fabrication and characterization of an ultraviolet (370 nm) emitting AlInGaN-based micro-light- emitting diode (micro-LED) array integrated with complementary metal-oxide-semiconductor control electronics. This configuration allows an 8 × 8 array of micro-LED pixels, each of 72-mum diameter, to be individually addressed. The micro-LED pixels can be driven in direct current (dc), square wave, or pulsed operation, with linear feedback shift registers (LFSRs) allowing the output of the micro-LED pixels to mimic that of an optical data transmitter. We present the optical output power versus drive current characteristics of an individual pixel, which show a micro-LED output power of up to 570 muW in dc operation. Representative optical pulse trains demonstrating the micro-LEDs driven in square wave and LFSR modes, and controlled optical pulsewidths from 300 ps to 40 ns are also presented

    Embolic strokes of undetermined source: prevalence and patient features in the ESUS Global Registry

    Get PDF
    Background: Recent evidence supports that most non-lacunar cryptogenic strokes are embolic. Accordingly, these strokes have been designated as embolic strokes of undetermined source (ESUS). Aims: We undertook an international survey to characterize the frequency and clinical features of ESUS patients across global regions. Methods: Consecutive patients hospitalized for ischemic stroke were retrospectively surveyed from 19 stroke research centers in 19 different countries to collect patients meeting criteria for ESUS. Results: Of 2144 patients with recent ischemic stroke, 351 (16%, 95% CI 15% to 18%) met ESUS criteria, similar across global regions (range 16% to 21%), and an additional 308 (14%) patients had incomplete evaluation required for ESUS diagnosis. The mean age of ESUS patients (62 years; SD = 15) was significantly lower than the 1793 non-ESUS ischemic stroke patients (68 years, p ≤ 0.001). Excluding patients with atrial fibrillation (n = 590, mean age = 75 years), the mean age of the remaining 1203 non-ESUS ischemic stroke patients was 64 years (p = 0.02 vs. ESUS patients). Among ESUS patients, hypertension, diabetes, and prior stroke were present in 64%, 25%, and 17%, respectively. Median NIHSS score was 4 (interquartile range 2–8). At discharge, 90% of ESUS patients received antiplatelet therapy and 7% received anticoagulation. Conclusions: This cross-sectional global sample of patients with recent ischemic stroke shows that one-sixth met criteria for ESUS, with additional ESUS patients likely among those with incomplete diagnostic investigation. ESUS patients were relatively young with mild strokes. Antiplatelet therapy was the standard antithrombotic therapy for secondary stroke prevention in all global regions

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Inelastic collisions of CaH with He at cryogenic temperatures

    Get PDF
    Using helium buffer gas cooling, we have prepared dense samples of ground-state molecular calcium monohydride (CaH X 2Σ) at cryogenic temperatures. We have used optical pumping to polarise the spin state of the CaH molecules and we have measured the inelastic collisions of molecular CaH with atomic helium at temperatures from 2 to 7 K. The measured CaH electronic spin depolarisation rate coefficient increases rapidly with increasing temperature, increasing from 2 × 10−13 cm3 s−1 to over 10−11 cm3 s−1. The strong dependence of rate coefficient on temperature is attributed to the CaH population in the first excited rotational state

    On the relevance of animal behavior to the management and conservation of fishes and fisheries

    Get PDF
    There are many syntheses on the role of animal behavior in understanding and mitigating conservation threats for wildlife. That body of work has inspired the development of a new discipline called conservation behavior. Yet, the majority of those synthetic papers focus on non-fish taxa such as birds and mammals. Many fish populations are subject to intensive exploitation and management and for decades researchers have used concepts and knowledge from animal behavior to support management and conservation actions. Dr. David L. G. Noakes is an influential ethologist who did much foundational work related to illustrating how behavior was relevant to the management and conservation of wild fish. We pay tribute to the late Dr. Noakes by summarizing the relevance of animal behavior to fisheries management and conservation. To do so, we first consider what behavior has revealed about how fish respond to key threats such as habitat alteration and loss, invasive species, climate change, pollution, and exploitation. We then consider how behavior has informed the application of common management interventions such as protected areas and spatial planning, stock enhancement, and restoration of habitat and connectivity. Our synthesis focuses on the totality of the field but includes reflections on the specific contributions of Dr. Noakes. Themes emerging from his approach include the value of fundamental research, management-scale experiments, and bridging behavior, physiology, and ecology. Animal behavior plays a key role in understanding and mitigating threats to wild fish populations and will become more important with the increasing pressures facing aquatic ecosystems. Fortunately, the toolbox for studying behavior is expanding, with technological and analytical advances revolutionizing our understanding of wild fish and generating new knowledge for fisheries managers and conservation practitioners.publishedVersio

    Language-free graphical signage improves human performance and reduces anxiety when working collaboratively with robots

    Get PDF
    As robots become more ubiquitous, and their capabilities extend, novice users will require intuitive instructional information related to their use. This is particularly important in the manufacturing sector, which is set to be transformed under Industry 4.0 by the deployment of collaborative robots in support of traditionally low-skilled, manual roles. In the first study of its kind, this paper reports how static graphical signage can improve performance and reduce anxiety in participants physically collaborating with a semi-autonomous robot. Three groups of 30 participants collaborated with a robot to perform a manufacturing-type process using graphical information that was relevant to the task, irrelevant, or absent. The results reveal that the group exposed to relevant signage was significantly more accurate in undertaking the task. Furthermore, their anxiety towards robots significantly decreased as a function of increasing accuracy. Finally, participants exposed to graphical signage showed positive emotional valence in response to successful trials. At a time when workers are concerned about the threat posed by robots to jobs, and with advances in technology requiring upskilling of the workforce, it is important to provide intuitive and supportive information to users. Whilst increasingly sophisticated technical solutions are being sought to improve communication and confidence in human-robot co-working, our findings demonstrate how simple signage can still be used as an effective tool to reduce user anxiety and increase task performance

    High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Get PDF
    BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)→12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy
    • …
    corecore