49 research outputs found

    Critical linkages between livestock production, livestock trade and potential spread of human African trypanosomiasis in Uganda:Bioeconomic herd modeling and livestock trade analysis

    Get PDF
    Background: Tsetse-transmitted human African trypanosomiasis (HAT) remains endemic in Uganda. The chronic form caused by Trypanosoma brucei gambiense (gHAT) is found in north-western Uganda, whereas the acute zoonotic form of the disease, caused by T. b. brucei rhodesiense (rHAT), occurs in the eastern region. Cattle is the major reservoir of rHAT in Uganda. These two forms of HAT are likely to converge resulting in a public health disaster. This study examines the intricate and intrinsic links between cattle herd dynamics, livestock trade and potential risk of spread of rHAT northwards. Methods: A bio-economic cattle herd model was developed to simulate herd dynamics at the farm level. Semi-structured interviews (n = 310), focus group discussions (n = 9) and key informant interviews (n = 9) were used to evaluate livestock markets (n = 9) as part of the cattle supply chain analysis. The cattle market data was used for stochastic risk analysis. Results: Cattle trade in eastern and northern Uganda is dominated by sale of draft and adult male cattle as well as exportation of young male cattle. The study found that the need to import draft cattle at the farm level was to cover deficits because of the herd structure, which is mostly geared towards animal traction. The importation and exportation of draft cattle and disposal of old adult male cattle formed the major basis of livestock movement and could result in the spread of rHAT northwards. The risk of rHAT infected cattle being introduced to northern Uganda from the eastern region via cattle trade was found to be high (i.e. probability of 1). Conclusion: Through deterministic and stochastic modelling of cattle herd and cattle trade dynamics, this study identifies critical links between livestock production and trade as well as potential risk of rHAT spread in eastern and northern Uganda. The findings highlight the need for targeted and routine surveillance and control of zoonotic diseases such as rHAT

    Spatio-temporal cluster analysis and transmission drivers for Peste des Petits Ruminants in Uganda.

    Get PDF
    Peste des Petits Ruminants (PPR) is a transboundary, highly contagious, and fatal disease of small ruminants. PPR causes global annual economic losses of between USD 1.5-2.0 billion across more than 70 affected countries. Despite the commercial availability of effective PPR vaccines, lack of financial and technical commitment to PPR control coupled with a dearth of refined PPR risk profiling data in different endemic countries has perpetuated PPR virus transmission. In Uganda, over the past five years, PPR has extended from north-eastern Uganda (Karamoja) with sporadic incursions in other districts /regions. To identify disease cluster hotspot trends that would facilitate the design and implementation of PPR risk-based control methods (including vaccination), we employed the space-time cube approach to identify trends in the clustering of outbreaks in neighbouring space-time cells using confirmed PPR outbreak report data (2007-2020). We also used negative binomial and logistic regression models and identified high small ruminant density, extended road length, low annual precipitation and high soil water index as the most important drivers of PPR in Uganda. The study identified (with 90 - 99% confidence) five PPR disease hotspot trend categories across subregions of Uganda. Diminishing hotspots were identified in the Karamoja region whereas consecutive, sporadic, new, and emerging hotspots were identified in central and southwestern districts of Uganda. Inter-district and cross-border small ruminant movement facilitated by longer road stretches and animal comingling precipitate PPR outbreaks as well as PPR virus spread from its initial Karamoja focus to the central and south-western Uganda. There is therefore urgent need to prioritize considerable vaccination coverage to obtain the required herd immunity among small ruminants in the new hotspot areas to block transmission to further emerging hotspots. Findings of this study provide a basis for more robust timing and prioritization of control measures including vaccination. This article is protected by copyright. All rights reserved

    Spatio-temporal cluster analysis and transmission drivers for Peste des Petits Ruminants in Uganda

    Get PDF
    Peste des Petits Ruminants (PPR) is a transboundary, highly contagious, and fatal disease of small ruminants. PPR causes global annual economic losses of between USD 1.5 and 2.0 billion across more than 70 affected countries. Despite the commercial availability of effective PPR vaccines, lack of financial and technical commitment to PPR control coupled with a dearth of refined PPR risk profiling data in different endemic countries has perpetuated PPR virus transmission. In Uganda, over the past 5 years, PPR has extended from northeastern Uganda (Karamoja) with sporadic incursions in other districts /regions. To identify disease cluster hotspot trends that would facilitate the design and implementation of PPR risk-based control methods (including vaccination), we employed the space–time cube approach to identify trends in the clustering of outbreaks in neighbouring space–time cells using confirmed PPR outbreak report data (2007–2020). We also used negative binomial and logistic regression models and identified high small ruminant density, extended road length, low annual precipitation and high soil water index as the most important drivers of PPR in Uganda. The study identified (with 90–99% confidence) five PPR disease hotspot trend categories across subregions of Uganda. Diminishing hotspots were identified in the Karamoja region whereas consecutive, sporadic, new and emerging hotspots were identified in central and southwestern districts of Uganda. Inter-district and cross-border small ruminant movement facilitated by longer road stretches and animal comingling precipitate PPR outbreaks as well as PPR virus spread from its initial Karamoja focus to the central and southwestern Uganda. There is therefore urgent need to prioritize considerable vaccination coverage to obtain the required herd immunity among small ruminants in the new hotspot areas to block transmission to further emerging hotspots. Findings of this study provide a basis for more robust timing and prioritization of control measures including vaccination

    Association of Stress, Glucocorticoid Receptor, and FK506 Binding Protein Gene Polymorphisms With Internalizing Disorders Among HIV-Infected Children and Adolescents From Kampala and Masaka Districts-Uganda

    Get PDF
    Children and adolescents living with human immunodeficiency virus (CA-HIV) suffer a considerable burden of internalizing disorders (IDs; depressive and anxiety disorders). Environmental and genetic factors have been reported to influence the vulnerability to IDs in western settings; however, their role among African populations remains inadequately explored. We investigated the individual and interactive effects of stress and single-nucleotide polymorphisms within the FK506 binding protein 5 (rs1360780) and glucocorticoid receptor (rs10482605) genes on ID status in a cohort of CA-HIV in Uganda. We genotyped rs10482605 (309 cases and 315 controls) and rs1360780 (350 cases and 335 controls) among CA-HIV with and without IDs using Kompetitive Allele-Specific PCR. Socio-demographic variables, as well as allele and genotype distributions, were compared between cases and controls using chi-square tests. Genotypes were assessed for Hardy-Weinberg equilibrium. Composite indices of recent and chronic stress classes were also generated. A hierarchical cluster analysis was used to generate cutoff points within each of the indices of recent and chronic stress. Logistic regression was used to assess the association between IDs and each of recent stress, chronic stress, and the investigated genotypes. The interaction effect of chronic/recent stress on the association between each of the polymorphisms and IDs was determined using a likelihood ratio test. We observed no significant association between IDs and rs1360780 and rs10482605 polymorphisms within the FKBP5 and glucocorticoid receptor genes, respectively (P > 0.050). Severe recent stress increased the vulnerability to IDs among CA-HIV (P = 0.001). We did not observe any gene-environment effect on vulnerability to IDs in this population. These findings support the currently held opinion that polymorphisms at single genetic loci only contribute a very small effect to the genetic vulnerability to IDs

    Identifying target areas for risk-based surveillance and control of Transboundary Animal Diseases: A seasonal analysis of slaughter and live-trade cattle movements in Uganda

    Get PDF
    Abstract Animal movements are a major driver for the spread of Transboundary Animal Diseases (TADs). These movements link populations that would otherwise be isolated and hence create opportunities for susceptible and infected individuals to meet. We used social network analysis to describe the seasonal network structure of cattle movements in Uganda and unravel critical network features that identify districts or sub-regions for targeted risk-based surveillance and intervention. We constructed weighted, directed networks based on 2019 between-district cattle movements using official livestock mobility data; the purpose of the movement (‘slaughter’ vs. ‘live trade’) was used to subset the network and capture the risks more reliably. Our results show that cattle trade can result in local and long-distance disease spread in Uganda. Seasonal variability appears to impact the structure of the network, with high heterogeneity of node and edge activity identified throughout the seasons. These observations mean that the structure of the live trade network can be exploited to target influential district hubs within the cattle corridor and peripheral areas in the south and west, which would result in rapid network fragmentation, reducing the contact structure-related trade risks. Similar exploitable features were observed for the slaughter network, where cattle traffic serves mainly slaughter hubs close to urban centres along the cattle corridor. Critically, analyses that target the complex livestock supply value chain offer a unique framework for understanding and quantifying risks for TADs such as Foot-and-Mouth disease in a land-locked country like Uganda. These findings can be used to inform the development of risk-based surveillance strategies and decision making on resource allocation. For instance, vaccine deployment, biosecurity enforcement and capacity building for stakeholders at the local community and across animal health services with the potential to limit the socio-economic impact of outbreaks, or indeed reduce their frequency

    Analysis of genetic diversity of banana weevils (Cosmopolites sordidus) (Coleoptera: Curculionidae) using tanscriptome-derived simple sequence repeat markers

    Get PDF
    The banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is an economically important insect pest of bananas. It causes up to 100% yield losses and substantial lifespan reduction in bananas. Advances in genomics, proteomics, and sequencing technologies have provided powerful pathways to genotyping disastrous pests such as C. sordidus. However, such technologies are often not available to the majority of rural subtropical African banana growers and pest control managers. This study was therefore motivated by the need to create cheap and easily accessible C. sordidus genotyping methods that could be deployed by banana pest control managers to the benefit of C. sordidus control programs in the tropics where such advanced technologies are not readily accessible. We used an in-house C. sordidus transcriptome from the an-ongoing study from which we mined an array of simple sequence repeat (SSR) markers. Of these, six highly polymorphic transcriptome-derived SSR markers were used to successfully genotype within and among banana weevil population genetic diversity of 12 C. sordidus populations collected from four banana-growing agro-ecological zones (AEZs) in Uganda. The developed transcriptome-derived SSR markers can be used by researchers in population genetics for characterization of the C. sordidus and identification of new genes that are linked to traits of particular interest. The significant genetic diversity revealed in C. sordidus provides pertinent information for integrated pest management strategies

    Collateral benefits of restricted insecticide application for control of African trypanosomiasis on Theileria parva in cattle: a randomized controlled trial

    Get PDF
    Tick and tsetse-borne diseases (TTBDs) constrain livestock production in tropical and subtropical regions of the world. Of this community of endemic diseases, East coast fever (T.parva) is the most important tick-borne disease (TBD) accounting for 70% of all losses due to TBDS in this region where control efforts target either tsetse or TBDs and seldom both. In those instances where simultaneous pyrethroid insecticide TTBD control is implemented, collateral benefits of tsetse control on TBD control have not been quantified. In the interest of guiding future TTBD control efforts, the effect of restricting pyrethroid insecticides to the legs, belly and ears (RAP) of cattle for tsetse and trypanosomiasis control on T.parva prevalence in crop-livestock production systems in Tororo district, south-eastern Uganda was determined.; We randomly allocated 16 villages to diminazene diaceturate (DA) and 3 graded RAP (25%, 50% and 75% of village herd sprayed respectively) treatment regimens. All cattle were ear-tagged, treated with diminazene diaceturate (DA) and those in regimens 2-4 received monthly graded RAP. Blood samples taken fourteen days post DA treatment and once three monthly were analysed by molecular techniques for T.parva.; In total, 8,975 samples from 3,084 animals were analysed. Prevalence of T.parva varied between 1-3% in different treatment regimens. RAP regimens were associated with slightly lower average risk of infection compared to DA. However, the confidence interval was broad and the result was not statistically significant. There was no evidence of a dose response relationship between graded RAP and T.parva prevalence. These findings are discussed herein with regard to endemic stability development to different TBDs.; We found only a slight effect of RAP on T.parva infection. Since sample size determination was based on trypanosomes incidence, the study was underpowered given the low T.parva prevalence. While the findings need to be confirmed in future studies, the observed slight reduction in the risk of infection with T.parva might not compromise endemic stability

    Prevalence and spatial distribution of Theileria parva in cattle under crop-livestock farming systems in Tororo District, Eastern Uganda

    Get PDF
    Tick-borne diseases (TBDs) present a major economic burden to communities across East Africa. Farmers in East Africa must use acaracides to target ticks and prevent transmission of tick-borne diseases such as anaplasmosis, babesiosis, cowdriosis and theileriosis; the major causes of cattle mortality and morbidity. The costs of controlling East Coast Fever (ECF), caused by Theileria parva, in Uganda are significant and measures taken to control ticks, to be cost-effective, should take into account the burden of disease. The aim of the present work was to estimate the burden presented by T. parva and its spatial distribution in a crop-livestock production system in Eastern Uganda.; A cross sectional study was carried out to determine the prevalence and spatial distribution of T. parva in Tororo District, Uganda. Blood samples were taken from all cattle (n: 2,658) in 22 randomly selected villages across Tororo District from September to December 2011. Samples were analysed by PCR and T. parva prevalence and spatial distribution determined.; The overall prevalence of T. parva was found to be 5.3%. Herd level prevalence ranged from 0% to 21% with majority of the infections located in the North, North-Eastern and South-Eastern parts of Tororo District. No statistically significant differences in risk of infection were found between age classes, sex and cattle breed.; T. parva infection is widely distributed in Tororo District, Uganda. The prevalence and distribution of T. parva is most likely determined by spatial distribution of R. appendiculatus, restricted grazing of calves and preferential tick control targeting draft animals

    Livestock network analysis for rhodesiense human African trypanosomiasis control in Uganda

    Get PDF
    Background: Infected cattle sourced from districts with established foci for Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) migrating to previously unaffected districts, have resulted in a significant expansion of the disease in Uganda. This study explores livestock movement data to describe cattle trade network topology and assess the effects of disease control interventions on the transmission of rHAT infectiousness.Methods: Network analysis was used to generate a cattle trade network with livestock data which was collected from cattle traders (n = 197) and validated using random graph methods. Additionally, the cattle trade network was combined with a susceptible, infected, recovered (SIR) compartmental model to simulate spread of rHAT (Ro 1.287), hence regarded as “slow” pathogen, and evaluate the effects of disease interventions.Results: The cattle trade network exhibited a low clustering coefficient (0.5) with most cattle markets being weakly connected and a few being highly connected. Also, analysis of the cattle movement data revealed a core group comprising of cattle markets from both eastern (rHAT endemic) and northwest regions (rHAT unaffected area). Presence of a core group may result in rHAT spread to unaffected districts and occurrence of super spreader cattle market or markets in case of an outbreak. The key cattle markets that may be targeted for routine rHAT surveillance and control included Namutumba, Soroti, and Molo, all of which were in southeast Uganda. Using effective trypanosomiasis such as integrated cattle injection with trypanocides and spraying can sufficiently slow the spread of rHAT in the network.Conclusion: Cattle trade network analysis indicated a pathway along which T. b. rhodesiense could spread northward from eastern Uganda. Targeted T. b. rhodesiense surveillance and control in eastern Uganda, through enhanced public–private partnerships, would serve to limit its spread

    Optical mapping compendium of structural variants across global cattle breeds

    Get PDF
    Structural variants (SV) have been linked to important bovine disease phenotypes, but due to the difficulty of their accurate detection with standard sequencing approaches, their role in shaping important traits across cattle breeds is largely unexplored. Optical mapping is an alternative approach for mapping SVs that has been shown to have higher sensitivity than DNA sequencing approaches. The aim of this project was to use optical mapping to develop a high-quality database of structural variation across cattle breeds from different geographical regions, to enable further study of SVs in cattle. To do this we generated 100X Bionano optical mapping data for 18 cattle of nine different ancestries, three continents and both cattle sub-species. In total we identified 13,457 SVs, of which 1,200 putatively overlap coding regions. This resource provides a high-quality set of optical mapping-based SV calls that can be used across studies, from validating DNA sequencing-based SV calls to prioritising candidate functional variants in genetic association studies and expanding our understanding of the role of SVs in cattle evolution
    corecore