13 research outputs found

    Interneuron progenitor transplantation to treat CNS dysfunction

    No full text
    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field

    A Unique Case of an Aggressive Gangliocytic Paraganglioma of the Filum Terminale

    No full text
    Paragangliomas are rare neuroendocrine tumors that are mostly found in the head and neck. Even less common are gangliocytic variant paragangliomas of the spine for which there are only 7 other documented cases in the literature. We report a case of gangliocytic paraganglioma of the sacral spine in a 68-year-old man. The growth pattern is documented over three years, which to our knowledge has not previously been reported in the literature and is different from the natural history. Clinical, radiological, and pathological characteristics of the tumor are discussed in light of available reports of this rare tumor

    Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum

    Get PDF
    Dopamine D2 receptor activity in the nucleus accumbens is associated with regulation of motivated responding. Here the authors show that overexpression of D2 receptors specifically in ventral striatal projection neurons leads to an increase in the willingness to work by reducing inhibitory transmission to ventral pallidal neurons

    A non-canonical striatopallidal Go pathway that supports motor control

    No full text
    In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.ISSN:2041-172

    5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study

    No full text
    OBJECTIVE: Greater extent of resection (EOR) is associated with longer overall survival in patients with high-grade gliomas (HGGs). 5-Aminolevulinic acid (5-ALA) can increase EOR by improving intraoperative visualization of contrast-enhancing tumor during fluorescence-guided surgery (FGS). When administered orally, 5-ALA is converted by glioma cells into protoporphyrin IX (PPIX), which fluoresces under blue 400-nm light. 5-ALA has been available for use in Europe since 2010, but only recently gained FDA approval as an intraoperative imaging agent for HGG tissue. In this first-ever, to the authors\u27 knowledge, multicenter 5-ALA FGS study conducted in the United States, the primary objectives were the following: 1) assess the diagnostic accuracy of 5-ALA-induced PPIX fluorescence for HGG histopathology across diverse centers and surgeons; and 2) assess the safety profile of 5-ALA FGS, with particular attention to neurological morbidity. METHODS: This single-arm, multicenter, prospective study included adults aged 18-80 years with Karnofsky Performance Status (KPS) score \u3e 60 and an MRI diagnosis of suspected new or recurrent resectable HGG. Intraoperatively, 3-5 samples per tumor were taken and their fluorescence status was recorded by the surgeon. Specimens were submitted for histopathological analysis. Patients were followed for 6 weeks postoperatively for adverse events, changes in the neurological exam, and KPS score. Multivariate analyses were performed of the outcomes of KPS decline, EOR, and residual enhancing tumor volume to identify predictive patient and intraoperative variables. RESULTS: Sixty-nine patients underwent 5-ALA FGS, providing 275 tumor samples for analysis. PPIX fluorescence had a sensitivity of 96.5%, specificity of 29.4%, positive predictive value (PPV) for HGG histopathology of 95.4%, and diagnostic accuracy of 92.4%. Drug-related adverse events occurred at a rate of 22%. Serious adverse events due to intraoperative neurological injury, which may have resulted from FGS, occurred at a rate of 4.3%. There were 2 deaths unrelated to FGS. Compared to preoperative KPS scores, postoperative KPS scores were significantly lower at 48 hours and 2 weeks but were not different at 6 weeks postoperatively. Complete resection of enhancing tumor occurred in 51.9% of patients. Smaller preoperative tumor volume and use of intraoperative MRI predicted lower residual tumor volume. CONCLUSIONS: PPIX fluorescence, as judged by the surgeon, has a high sensitivity and PPV for HGG. 5-ALA was well tolerated in terms of drug-related adverse events, and its application by trained surgeons in FGS for HGGs was not associated with any excess neurological morbidity
    corecore