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C erebral cavernous malformations (CCMs; cavernous angio-
mas, cavernomas) are low-flow, hemorrhagic vascular le-
sions of the central nervous system that affect 0.16% to

0.5% of the population.1 Anatomically, they are composed of ab-
normal cystic vascular channels lined by a single layer of endothe-
lial cells (ECs) with impaired tight junctions.2 These vessels are typi-
cally arranged in compact masses with no intervening brain
parenchyma, so the deriving vascular malformations are angio-
graphically occult. They may undergo acute intracranial hemor-
rhage (ICH), small subclinical bleeds, or slow diapedesis of red blood
cells3 that produce a characteristic hemosiderin rim on magnetic
resonance imaging.4 In addition to causing stroke from ICH,5 CCM
can also provoke seizures,6 headaches, and focal neurological defi-
cits (FNDs).5 About 20% of cases are familial and characterized by
the presence of multiple lesions as opposed to sporadic CCM, which
has no prevalence within families and typically presents with a single

lesion. Radiation-induced cavernous malformation (RICM), a sub-
set of sporadic CCM, can occur in patients previously treated with
radiotherapy for brain tumors. Radiation-induced cavernous mal-
formations generally occur after many years, with the time of diag-
nosis inversely associated with age at radiation treatment. Radio-
graphically and histologically, they are indistinguishable from other
sporadic lesions and present similar rates of symptomatic hemor-
rhage. However, RICM is usually diagnosed at a younger age, and pa-
tients are more likely to present with multiple lesions.7

Cerebral cavernous malformation has a genetic basis. Its mu-
tational landscape has been first investigated in familial forms, where
predisposition to develop cavernomas is inherited through an au-
tosomal dominant pattern with incomplete penetrance. Linkage
studies allowed associating the occurrence of CCMs with loss-of-
function mutations in 1 of 3 genetic loci: CCM1 (KRIT1) at chromo-
some 7p,8 CCM2 (MGC4607) at 7q, and CCM3 (PDCD10) at 3q.9

IMPORTANCE Cerebral cavernous malformations (CCMs) are vascular lesions of the brain that
may lead to hemorrhage, seizures, and neurologic deficits. Most are linked to loss-of-function
mutations in 1 of 3 genes, namely CCM1 (originally called KRIT1), CCM2 (MGC4607), or CCM3
(PDCD10), that can either occur as sporadic events or are inherited in an autosomal dominant
pattern with incomplete penetrance. Familial forms originate from germline mutations, often
have multiple intracranial lesions that grow in size and number over time, and cause an earlier
and more severe presentation. Despite active preclinical research on a few pharmacologic
agents, clinical translation has been slow. Open surgery and, in some cases, stereotactic
radiosurgery remain the only effective treatments, but these options are limited by lesion
accessibility and are associated with nonnegligible rates of morbidity and mortality.

OBSERVATIONS We discuss the limits of CCM management and introduce findings from in
vitro and in vivo studies that provide insight into CCM pathogenesis and indicate molecular
mechanisms as potential therapeutic targets. These studies report dysregulated cellular
pathways shared between CCM, cardiovascular diseases, and cancer. They also suggest the
potential effectiveness of proper drug repurposing in association with, or as an alternative to,
targeted interventions.

CONCLUSIONS AND RELEVANCE We propose methods to exploit specific molecular pathways
to design patient-tailored therapeutic approaches in CCM, with the aim to alter its natural
progression. In this scenario, the lack of effective pharmacologic options remains a critical
barrier that poses an unfulfilled and urgent medical need.
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Corresponding mutation rates range between 53% and 65% for
CCM1, 15% and 19% for CCM2, and 10% and 16% for CCM3.10-12

Compared with those in CCM1 and CCM2, mutations in the CCM3
gene are associated with the most severe phenotype, defined as
an earlier onset of ICH and concomitance of multiple meningio-
mas in some cases.11 A 2-hit mechanism,13 whereby a germline
mutation in 1 allele of a CCM gene is later complemented by a
somatic mutation in the other allele, has been described as a trig-
ger in familial CCM.14 Although CCM is a worldwide disorder, a
specific mutation in the CCM1 gene is prevalent in northern
New Mexico. The origin of this founder mutation, also known as
the common Hispanic mutation–CCM1 , has been traced to a
Spanish ancestor who settled in New Mexico in the 1600s. The
common Hispanic mutation–CCM1 is responsible for a 15-fold
higher population prevalence and is present in virtually all cases
of familial CCM in the New Mexico Hispanic population.15 A
founder mutation in the CCM2 gene has been described in the
Ashkenazi Jewish population,16 while no founder mutations have
yet been found in the CCM3 gene. The association between geno-
type and phenotype in sporadic forms of CCM is less character-
ized, although the involvement of the same genes is emerging.
Mutations in either the CCM1, CCM2, or CCM3 gene have been
reported in 57% of sporadic cases with multiple lesions.12 Again, a
2-hit mechanism has been implicated, in which 2 spontaneous
somatic mutations occur sequentially at both alleles of 1 of the
known CCM genes.17 Yet other reports suggest a strong associa-
tion between the presence of cerebral lesions and polymor-
phisms in the CCM genes in sporadic cases.18 Whether similar
genetic alterations take place in RICM is not yet known. The
pathophysiology of RICM has been associated with vascular
injury19 and may lay along a spectrum of radiation-induced vascu-
lopathies that evolve from telangiectasia to CCM.

Clinical Presentation, Natural History,
and Current Management of CCM
About 60% of CCM lesions present as clinically silent1 and are dis-
covered incidentally on brain magnetic resonance imaging ob-
tained for other reasons. Sporadic CCM lesions may be associated
with a developmental venous anomaly,20 while familial forms typi-
cally present with multiple lesions (even hundreds). In familial pa-
tients, modern diagnostic techniques, such as susceptibility-
weighted imaging, detect more lesions than were previously
identified with T2-weighted gradient echo sequences.21 These tech-
niques also show that new vascular lesions constantly form de novo
with age.22

In symptomatic cases, the most common presentation is sei-
zures, followed by ICH and FND in the absence of an acute
hemorrhage.5 The 5-year risk of first-time seizure in asymptomatic
CCM is 4% but increases to 6% in patients presenting with ICH or
FND.23 Reported rates of ICH vary widely in the literature. In 2008,
the Angioma Alliance Scientific Advisory Board standardized the defi-
nition of CCM-associated ICH.5 A meta-analysis24 across 7 patient
cohorts using this new definition reported an overall 5-year ICH risk
of 15.8%.24 Compared with supratentorial and cerebellar CCMs, le-
sions located in the brainstem carry the worst prognosis and high-
est neurologic morbidity, with the combined risk of ICH and FND

escalating to more than 50% at 5 years.24,25 Moreover, the annual
risk of ICH in incidentally discovered or previously asymptomatic CCM
is significantly higher in familial (4.3% to 6.5%)26 compared with spo-
radic cases (0.08% to 0.1%).1

The clinical approach to CCM depends on presentation, lesion
location, and symptom severity (Figure 1). In 2017, the Angioma
Alliance Scientific Advisory Board published expert guidelines for
clinical management of CCM,27 and we refer the reader to this
publication. Briefly, a 3-generation family history should be col-
lected at the time of diagnosis. Genetic testing, including
mutation/deletion analysis of CCM1, CCM2, and CCM3 genes, is
recommended in all cases with multiple lesions without a history
of radiation exposure or a positive family history. Further genetic
counseling should be offered when a mutation is discovered in the
proband. Asymptomatic lesions should be managed conserva-
tively with imaging, although routine imaging follow-up is recom-
mended only in the presence of new or worsening symptoms.27

Cerebral cavernous malformation–related epilepsy is initially
treated with antiepileptic drugs until it becomes refractory. Sur-
gery may be offered for medically intractable epilepsy, supported
by evidence for early surgical resection of single lesions to obtain
durable seizure control.6 In general, surgery is reserved for symp-
tomatic lesions owing to its intrinsic risk. Postsurgical morbidity
and mortality increase after lesion removal from certain locations;
those in eloquent/deep areas and brainstem have the highest risk.
Because the overall 5-year probability of a second ICH is as high as
29.5%, surgery is recommended after a first symptomatic bleed
for lesions in favorable locations.28 Advances in surgical naviga-
tion, tractography,29 and awake mapping30 permit safe resection
of lesions in eloquent locations including the brainstem.31 In con-
trast, surgery is often delayed in the case of deep lesions until the
appearance of a second symptomatic bleed. Stereotactic radiosur-
gery (SRS) is an alternative option for single lesions in surgically
inaccessible areas or in locations with high surgical morbidity,
although it is not recommended for asymptomatic lesions or in
familial cases.32

Figure 1. Flowchart Summarizing the Clinical Course of Cerebral
Cavernous Malformation (CCM) and Medical/Surgical Guidelines

CCM presentation
(increasing severity)

Treatment
(current guidelines)

Asymptomatic (incidental) Conservative

Symptomatic: first-time seizure Antiepileptics

Symptomatic: refractory epilepsy Surgery

Symptomatic: first ICH (supratentorial) Surgery

Symptomatic: first ICH (brainstem, deep nuclei) Conservative

Symptomatic: second ICH (brainstem, deep nuclei) Surgery/radiation

Depending on the clinical presentation, different strategies are recommended
for CCM. For asymptomatic/incidentally discovered lesions, conservative
management is the elected choice. Surgery is considered for easily
accessible lesions to mitigate the pathological burden. The only medical
treatment included in standard management is pharmacologic control of
seizures when the condition is not refractory to antiepileptic drugs. However,
in this case, evidence suggests early surgery for better seizure control. In all
other cases of symptomatic CCM, surgery is the only accepted approach.
There is limited evidence for the application of radiation therapy, which is
reserved for surgically inaccessible lesions. ICH indicates intracranial
hemorrhage.
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Failure of Current Strategies

Almost all patients with CCM-related seizures develop epilepsy within
5 years from diagnosis,23 and up to 40% become refractory to an-
tiepileptic medications,33 the only pharmacologic treatment cur-
rently indicated for CCM. While surgical resection of a single symp-
tomatic lesion results in good seizure control, a favorable outcome
is dependent on the duration of seizures. Seizure control after sur-
gery is poor if the duration of epilepsy has been more than 2 years34

because frequent asymptomatic microbleeds may induce epilep-
togenic gliosis in a perilesional brain.35 For all other symptoms, the
mainstay treatment options are surgical resection of the lesion and
SRS in selected cases, although they are marred by inherent limita-
tions. For example, surgery is often too dangerous or not possible
for deep-seated lesions in locations such as the thalamus and
brainstem. Moreover, much of the experience on surgical man-
agement of CCM comes from highly-specialized centers, which
limits generalization to a community setting. Even in experienced
hands, the overall risk of major surgical morbidity, such as nonfa-
tal stroke, is around 6%.28 For deep-seated lesions, such as those
in the basal ganglia and thalamus, this risk approaches 18%, with
an operative mortality of 2%.36 For brainstem lesions, surgical
resection results in significant postoperative morbidity in 45% of
the cases. Of these, up to 12% of patients require tracheostomy
and feeding tubes, although they tend to improve over time.37

Likewise, SRS, when applicable, has a roughly 2-year latency
period before the annual risk of hemorrhage is significantly
reduced and is limited to small lesions with treatment volumes
less than 2 to 3 cm3 to limit marginal doses.38 Furthermore, there
is still some debate as to whether the observed effects of SRS are
indicative of efficacy or a mere reflection of the natural evolution
of the disease.27

Even in familial cases, for which our understanding of disease
progression is more comprehensive, incomplete penetrance and
variable presentation within families preclude a reliable risk
estimation,39 hence the necessity for continuous follow-up and/or
prompt surgical intervention at the appearance or worsening of
symptoms. Nevertheless, our growing knowledge on the natural pro-
gression of CCM suggests that there could be a window of oppor-
tunity to affect the disease course from time of diagnosis to devel-
opment of aggressive behavior. In sporadic cases, exploiting this
window would control lesion growth and microhemorrhages to limit
or abrogate symptomatic ICH and epileptogenesis, which cannot be
achieved with current treatment options. Similarly, there is no ef-
fective approach to delay lesion growth and de novo formation typi-
cal of familial cases, which constantly produce new vascular
malformations22 at a rate that can reach 2.7 per patient per year in
the presence of mutations in the CCM3 gene.40

Altered Cellular and Molecular Processes
Underlying CCM Lesion Formation
Studies have made progress to link basic and translational science
to the emergence of CCM lesions, which reveals novel, putative treat-
ment targets. While a comprehensive overview of CCM-related cel-
lular mechanisms and signaling pathways goes beyond the scope of

this review, here we summarize the core events that are critical to
elucidate disease pathology and design effective next-generation
therapies.

Cerebral cavernous malformations are formed by activated, an-
giogenic ECs41 that induce local inflammation and oxidative stress
owing to impaired autophagy.42 At the cellular level, these ECs un-
dergo endothelial-to-mesenchymal transition (EndMT), a process
common to other vascular anomalies, such as atherosclerosis and
hereditary hemorrhagic telangiectasia,43 and similar to the epithelial-
to-mesenchymal transition (EMT) observed in cancer cells. Several
studies confirmed that EndMT44,45 underlies CCM formation in both
familial46,47 and sporadic48 cases. Endothelial cells subjected to
this transition acquire a stem cell–like and mesenchymal cell–like
phenotype characterized by loss of proper polarization, increased
migration, and decreased cell-cell and cell-matrix adhesion. Con-
sequences of EndMT are abnormal architecture and leakiness of
brain blood vessels, and loss of contact between ECs and nervous
cells, which ultimately lead to formation of the typical mulberry-
shaped cavernae in the context of an angiogenic and inflamma-
tory microenvironment.

The molecular mechanisms underlying these biologic and
cellular processes have been first studied in iCCM1, an inducible,
EC-specific CCM1 knockout transgenic mouse that reproduces the
phenotype observed in patients with loss-of-function mutations in
the CCM1 gene, namely, lesions within the central nervous system
that are composed of dilated multilumen vascular channels with signs
of vascular leakage.49 Brain ECs derived from iCCM1 mice show loss
of cell polarity and disruption of cell-cell contacts owing to altered
vascular endothelial (VE)–cadherin distribution along with Notch
inhibition,49 which may induce angiogenesis by releasing a nega-
tive control on extracellular-signal-regulated kinase50 and ephrin re-
ceptor B4.51 These cells show hyperactivated EndMT signaling path-
ways: they overexpress bone morphogenetic protein 6, which leads
to hyperactivation of transforming growth factor β receptor with con-
sequent overexpression of β-catenin, increased small mothers
against decapentaplegic phosphorylation, and translocation to the
nucleus, followed by upregulation of stem cell, inflammatory, and
mesenchymal genes including Kruppel-like factor 4 (Klf4)49

(Figure 2). The key role of KLF transcription factors in CCM has been
corroborated in an independent mouse model of EC-specific CCM1
gene loss, in which upregulation of Klf2 and Klf4 genes occurs in the
early phases of lesion formation,52 and in mice defective for the CCM2
gene.53 Likewise, increased KLF2 and FLF4 protein levels have been
observed in both familial and sporadic CCM lesions and are consid-
ered a hallmark of CCM-related EndMT (Table 1).47-49,52-54

In addition to these observations in CCM1 and CCM2 models, the
peculiar phenotype associated with CCM3 gene mutations has been
specifically examined in mice with inducible EC-specific loss of CCM3.
In these mice, a distinctive tract is an increased exocytosis and se-
cretion of the proangiogenic factor angiopoietin-254 (Figure 2),
coupled with decreased EC adhesion and pericyte coverage, which
causes disorganized blood vessels with enlarged lumen in the cer-
ebellar and retinal venous plexuses. A similar pattern of vessel dis-
organization associated with high levels of angiopoietin-2 has also
been observed in surgical specimens and lesion-derived ECs from
patients with CCM3 gene mutations54 (Table 1).

The question remains as to how these molecular pathways and
cellular processes derive from the genetic defects identified in
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patients with CCM. Quite simply, a loss-of-function mutation in 1 of
the CCM genes causes defective production of the homonymous pro-

tein. So, the lack of either the CCM1, CCM2, or CCM3 protein is the
molecular trigger that ultimately facilitates disease onset. The 3 CCM

Figure 2. Schematic Representation of Cerebral Cavernous Malformation (CCM) Onset and Proposed Therapeutic Interventions
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In normal brain endothelial cells (ECs), the 3 CCM proteins form complete CCM
and striatin-interacting phosphatase and kinase (STRIPAK) complexes. Under
these conditions, cells are properly polarized and tightly connected to each
other by vascular endothelial (VE)–cadherin and to the extracellular matrix by β1

integrin, so cell adhesion prevails over migration. Blood vessels show a properly
organized lumen with a continuous endothelial layer. Angiogenesis is inhibited
through activation of a Notch-mediated negative circuit, exocytosis is restricted
by inhibition of Cdc42, and oxidative stress is controlled. Loss of either the
CCM1, CCM2, or CCM3 protein disrupts these complexes. The consequent loss
of VE-cadherin organization is paralleled by hyperactivation of
mitogen-activated protein kinase kinase kinase 3 (MEKK3), RhoA/Rho-
associated protein kinase (ROCK) and Cdc42, overexpression of Kruppel-like
factor 2 (KLF2) and KLF4 with induction of transforming growth factor β (TGFβ)

signaling, and inhibition of Notch. Brain ECs undergoing endothelial-to-
mesenchymal transition (EndMT) lose their physiological adhesion and
polarization properties and acquire a migratory phenotype, thus disrupting the
endothelial barrier. Increased oxidative stress, exocytosis, inflammation and
angiogenesis, and decreased autophagy emerge as pathogenic events during
CCM lesion formation (in red). Based on these biological premises, preclinical
studies and ongoing clinical trials advise the repurposing of several targeted
drugs for CCM treatment (in green). ANGPT2 indicates angiopoietin-2; BMP,
bone morphogenetic protein; DMH1, dorsomorphin homolog 1; EphB4, ephrin
receptor B4; ICAP1, integrin cytoplasmic associated protein-1; MST, mammalian
sterile 20-like kinase 3; mTor, mammalian target of rapamycin; SMAD, small
mothers against decapentaplegic; TLR-4, toll-like receptor 4.
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proteins do not possess intrinsic enzyme activity and are therefore
considered as scaffolds or adaptors.55 When present at normal lev-
els, they bind to each other in the so-called CCM complex, which also
includes VE-cadherin,56 integrin cytoplasmic associated
protein-1,57,58 sorting nexin 17,59 and Rap160 as direct interactors with
CCM1 and mitogen-activated protein kinase kinase kinase 3
(MEKK3)61 and Smurf162 as direct interactors with CCM2. On loss of
either the CCM1, CCM2, or CCM3 protein and disruption of the CCM
complex, these interactors are no longer regulated. Therefore, they
can induce disaggregation of adherens junctions (VE-cadherin),56

dysregulation of β1 integrin functions (integrin cytoplasmic associ-
ated protein-1 and sorting nexin 17),57-59 overexpression of KLF2 and
KLF4 (MEKK3),52 and hyperactivation of RhoA signaling via Rho-
associated protein kinase (ROCK) (Rap1, Smurf1, and MEKK3)53,60,62

(Figure 2). Collectively, these altered pathways result in loss of cell
polarity and decreased cell adhesion associated with disruption of

endothelial barrier integrity and abnormal vascular lumen, all events
associated with the onset of EndMT (Table 2).52,53,57,59-68 While the
presence of CCM1 and CCM2 proteins is restricted to the CCM com-
plex, the CCM3 protein is also found in the striatin-interacting phos-
phatase and kinase (STRIPAK) complex, where it binds to germinal
center kinase III members: mammalian sterile 20-like kinase 3 also
known as serine/threonine kinase 24 (STK24),69 suppressor of ki-
nase 1 (STK25),67 and mammalian sterile 20-like kinase 4(STK26)66

(Figure 2). Loss of the CCM3 protein and consequent disruption
of the STRIPAK complex leads to hyperactivation of Cdc4269

accompanied by induction of cell migration,67 alteration of cell
polarity,66 impaired ability to contain oxidative stress,68 and abnor-
mal exocytosis62-64 (Table 2), which explains the increased secre-
tion of angiopoietin-2 observed in vivo.54 Although more studies are
needed to dissect the consequences of CCM3 loss-of-function mu-
tations, it seems reasonable that these genetic defects would cause

Table 2. Interactors of the CCM Proteins Identified by In Vitro Studies, Their Physiological Functions,
and Pathogenic Events Mediated by These Interactors Following Disruption of Either the CCM
or STRIPAK Complexes

Complex
CCM
Protein Direct Interactor

Physiological Role
of the Interactor

Pathological Role of the
Interactor in CCM Source

CCM CCM1 VE-cadherin Main constituent of
adherens junctions

Disrupted cell-cell
contacts, loss of cell
polarity and impaired
lumen organization

Lampugnani et al56

CCM CCM1 Rap1 Regulation of
RhoA/ROCK

Hyperactivated
RhoA/ROCK: decreased
cell adhesion, disruption
of endothelial barrier

Serebriiskii et al60

CCM CCM1 ICAP1
and SNX17

Regulation of β1
integrin

Dysregulated β1 integrin:
decreased cell adhesion

Zhang et al57

Czubayko et al59

CCM CCM2 MEKK3 Several functions in
vascular
development
among which
regulation of
RhoA/ROCK

Hyperactivated
RhoA/ROCK, vascular
leakage due to disruption
of endothelial barrier,
overexpressed KLF2/4

Zhou et al52

Whitehead et al53

Fisher et al61

CCM CCM2 Smurf1 Degradation of
RhoA

Hyperactivated
RhoA/ROCK: decreased
cell adhesion

Crose et al.62

STRIPAK CCM3 MST3/STK24 Regulation of
Cdc42

Hyperactivated Cdc42:
increased exocytosis

Lant et al63

Song et al64

Zhang et al65

STRIPAK CCM3 SOK1/STK25
MST4/STK26

Preservation of
Golgi integrity and
centrosome
orientation,
protection from
oxidative stress

Increased migration, loss
of cell polarity, oxidative
stress

Ma et al66

Fidalgo et al67,68

Abbreviations: CCM, cerebral
cavernous malformation;
ICAP1, integrin cytoplasmic
associated protein-1;
KLF, Kruppel-like factor;
MEKK3, mitogen-activated protein
kinase kinase kinase 3;
MST3, mammalian sterile 20-like
kinase 3; ROCK, Rho-associated
protein kinase; SNX17, sorting nexin
17; STK, serine/threonine kinase;
SOK, suppressor of kinase;
STRIPAK, striatin-interacting
phosphatase and kinase;
TGFβ, transforming growth factor β;
VE, vascular endothelial.

Table 1. Dysregulated Signaling Pathways and Cellular Processes Identified In Vivo in CCM Animal Models
and Ex Vivo in Patient-Derived Specimens (Surgical Samples and/or Lesion-Derived ECs)

Mutated Gene Study Model Affected Signaling Pathways and Cellular Processes Source
Ccm1 Transgenic mice Disrupted VE-cadherin junctions; activated TGFβ

signaling; upregulated Klf4 among other mesenchymal,
stem cell, and inflammatory genes; inhibited Notch

Maddaluno et al49

Ccm1 Transgenic mice Upregulated Klf2 and Klf4 genes Zhou et al52

Ccm2 Transgenic mice Upregulated Klf2 and Klf4 genes Whitehead et al53

CCM1, CCM3
Familial and
sporadic

Patient-derived
specimens

Overexpressed KLF2 and KLF4 proteins Zhou et al52

CCM1, CCM2,
CCM3 Familial
and sporadic

Patient-derived
specimens

Disrupted VE-cadherin junctions; activated TGFβ
signaling; overexpressed KFL4 among other
mesenchymal, stem cell, and inflammatory protein
markers

Bravi et al48

Cuttano et al47

Ccm3 Transgenic mice Increased secretion of ANGPT2 Jenny Zhou et al54

CCM3 Patient-derived
specimens

Increased levels of ANGPT2

Abbreviations: ANGPT2,
angiopoietin-2; CCM, cerebral
cavernous malformation;
EC, endothelial cell; KLF, Kruppel-like
factor; TGFβ, transforming growth
factor β; VE, vascular endothelial.
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additive effects because the CCM3 protein contributes to both the
CCM and STRIPAK complexes. This would explain the extremely
severe phenotype observed in patients with loss-of-function
mutations of the CCM3 gene.11

New Target Inhibitors and Drug Repurposing
Undergoing Preclinical or Clinical Investigation
The biological and molecular bases of CCM suggest that specifi-
cally dysregulated pathways will yield therapeutic targets (summa-
rized in Table 3).46,49-51,53,70-76 From a broader perspective, the CCM
proteins regulate biological processes whose dysregulation is also
observed in cardiovascular diseases and cancer, namely decreased
autophagy70 paralleled by increased angiogenesis,77 inflammation,42

and oxidative stress.78 The prevalence of these processes implies
that specific inhibitors could be effective in the symptomatic treat-
ment of CCM. This hypothesis is confirmed by preclinical studies in
which defective autophagy was partially restored by pharmacologi-
cal inhibition of mammalian target of rapamycin.70 In addition, the
hyperactivation of ERK50 and EphB4 kinase51 observed in CCM-
related angiogenesis was reversed by treatment with the small-
molecule inhibitors sorafenib50 and NVP-BHG712 (NVP),51 respec-
tively. At the cellular level, EndMT acts as a driving mechanism in CCM

lesion onset both in animal models and patients.46-49 Consistently,
pharmacologic inhibition of transforming growth factor β signaling
with dorsomorphin homolog 1 (targeting bone morphogenetic pro-
tein), LY364947, SB431542 (targeting small mothers against
decapentaplegic),49 or sulindac (targeting β-catenin)46 proved ef-
fective in reverting the CCM phenotype. The MEKK3-KLF2/4 axis was
also successfully targeted with inhibitors of the innate immune re-
ceptor toll-like receptor 4, which was incidentally identified as up-
stream inducer of this signaling pathway in mouse models of gram-
negative gut infections.71 RhoA, whose hyperactivation in CCM has
been reported in several in vitro and in vivo studies, is another suc-
cessful target with the kinase inhibitor fasudil72,79 and the indirect
inhibitor simvastatin,53 which normalized vascular permeability and
decreased lesion number in transgenic mice. Some of the previ-
ously mentioned drugs are already on the market for other applica-
tions and could be repurposed with relative ease, namely the
mTor inhibitors, sirolimus and everolimus, and the multikinase inhibi-
tor, sorafenib, approved for cancer treatment; sulindac, a nonsteroi-
dal antiinflammatory drug; toll-like receptor 4 inhibitors, originally de-
velopedforsepsistreatment;fasudil,avasodilatorusedtotreatcerebral
vasospasm; and simvastatin, a lipid-lowering medication. In addition
to these rationally designed approaches, other candidates for drug re-
purposing have emerged from screening studies that assessed mar-
keted drugs in the context of CCM. For example, cholecalciferol (vita-

Table 3. Proposed Drug Repurposing and Targeted Approaches

Study Type and Drug Targets in CCM Approved Application Source
In vitro and in vivo

Rapamycin analogues mTor Antineoplastic drugs Marchi et al70

Sorafenib ERK Antiangiogenic drug Wüstehube et
al50

NVP EphB4 None You et al51

DMH1 TGFβ signaling: BMP None Maddaluno et
al49

LY364947
SB431542

TGFβ signaling: SMAD None Maddaluno et
al49

Sulindac TGFβ signaling: β-catenin Nonsteroidal antiinflammatory drug Bravi et al46

TLR4-blocking agents MEKK3-KLF2/4
down-stream of TLR4
signaling

Treatment of sepsis Tang et al71

Fasudil RhoA Vasodilator, treatment of cerebral
vasospasm

McDonald et al72

Simvastatin RhoA Statin, treatment of
hypercholesterolemia

Whitehead et al53

Drug-screening platforms

Vitamin D3 Potential effect on
oxidative stress and/or
inflammation

Vitamin supplement Gibson et al73

Tempol Potential effect on
oxidative stress and/or
inflammation

Antioxidant and anti-inflammatory
drug

Gibson et al73

Bosutinib, saracatenib,
danusertib, sunitinib,
and desatinib

MST3/STK24 Antineoplastic drugs Olesen et al74

Incidental findings and
case reports

Bevacizumab VEGFA Antiangiogenic drug Aguilera et al75

Propranolol Potential effect on
angiogenesis

β-Adrenergic blocker, treatment of
hypertension, and infantile
hemangioma

Zabramski et al76

Clinical trials

Simvastatin RhoA Statins, treatment of
hypercholesterolemia

Not yet published

Atorvastatin RhoA Statins, treatment of
hypercholesterolemia

Not yet published

Abbreviations: CCM, cerebral
cavernous malformation;
DMH1, dorsomorphin homolog 1;
EphB4, ephrin receptor B4;
ERK, extracellular-signal-regulated
kinase; KLF, Kruppel-like factor;
MEKK3, mitogen-activated protein
kinase kinase kinase 3;
MST3, mammalian sterile 20-like
kinase 3; mTor, mammalian target of
rapamycin; STK, serine/threonine
kinase; TGFβ, transforming growth
factor β; TLR4, toll-like receptor 4;
VEGFA, vascular endothelial growth
factor A.
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min D3) and tempol (a free-radical scavenger) emerged from a
combined in vitro–in vivo screening of 2100 molecules as efficient in
reducing lesion burden in Ccm2 transgenic mice.73 Based on their
known pharmacologic action, these compounds would be expected
to control CCM progression by inhibiting inflammation and oxidative
stress. In another study, 14 of 277 tested compounds were confirmed
as inhibitors of MST3/STK24 kinase activity, 5 of which are already ap-
proved by the US Food and Drug Administration or in phase II/III clini-
cal trials for cancer treatment (namely, bosutinib, saracatenib, danu-
sertib, sunitinib, and desatinib).74

Whileseveralcompoundsarebeinginvestigatedinpreclinicalstud-
ies, only a few pharmacologic agents have reached clinical testing. The
potential efficacy of targeting angiogenesis in CCM is supported by 2
case reports: the observation of incidental resolution in a case of CCM
on treatment with the anti–vascular endothelial growth factor A anti-
body, bevacizumab,75 and lesion regression and reduction of symp-
tomatic ICH in 2 patients with CCM on treatment with propranolol,76

a β-adrenergic blocker and an antiangiogenic agent used to treat hy-
pertension and infantile hemangioma.80 Despite these encouraging
observations, to our knowledge, there are no ongoing clinical trials to
evaluate antiangiogenic drugs in CCM. The focus remains on repur-
posing statins in an attempt to restore physiologic vascular permeabil-
ity in brain capillaries. Statins are approved for the treatment of
hypercholesterolemia because they are powerful inhibitors of 3-hy-
droxy-3-methyl-glutarylcoenzymeAreductase,therate-controllingen-
zyme in cholesterol synthesis. However, they also impair posttransla-
tional modification of small GTPase proteins, such as RhoA, and have
proven efficient in reverting the CCM phenotype in transgenic mice.53

A first, randomized early phase I trial (NCT01764451) is an imaging in-
vestigation conducted by our group in New Mexico to study vascular
permeability across the blood-brain barrier with dynamic contrast-
enhanced magnetic resonance imaging. The primary outcome will
evaluate whether simvastatin improves the blood-brain barrier integ-
rity in patients with familial CCM1. The secondary outcome will corre-
late permeability data with new lesion formation or growth. A sec-
ond, phase I/II randomized clinical trial (NCT02603328) is planned to
evaluate the long-term effect of atorvastatin on lesion growth in pa-

tients with symptomatic (hemorrhagic) CCM. The results of these trials
are not yet available.

Conclusions
Despite being a rare disease, CCM is highly prevalent in certain re-
gions, such as New Mexico, and a substantial percentage of pa-
tients experience severe symptoms. While clinically silent lesions are
left untreated, patients with symptoms, such as seizure, ICH, and/or
FND,canconsidersurgicaltreatmentoptions,butonlyinspecificcases.
Besides antiepileptic drugs, to which up to 40% of patients become
refractory, no pharmacologic management of CCM has proven effec-
tive enough to be translated to the clinic (Figure 1). A strategy that ad-
dresses lesion growth, number, and inherent hemorrhagic potential
is needed to alter the disease trajectory in both asymptomatic and
symptomatic cases. Indeed, interfering with the natural disease course
in CCM would drastically reduce risky surgeries, as well as provide an
option to otherwise incurable patients.

We propose to exploit the growing knowledge on the molecu-
lar biology that underlies CCM to design patient-tailored therapeu-
tics (Figure 2). Cerebral cavernous malformation proteins interact,
either directly or indirectly, with several cellular partners. Cerebral
cavernous malformation 1, CCM2, and CCM3 are components of the
CCM complex, while CCM3 is peculiarly included into the STRIPAK
complex. Loss of CCM proteins is associated with a disruption of such
complexes and activates signaling pathways in brain ECs, eventu-
ally leading to lesion formation (Table 1 and Table 2). Blocking
these dysregulated pathways with targeted inhibitors has proven
therapeutic efficacy in animal models and require further investi-
gation. Moreover, several pathologic features of CCM overlap
with those observed in cardiovascular diseases and cancer,
namely autophagy, angiogenesis, inflammation, and oxidative
stress. These commonalities support the feasibility of drug repur-
posing. In this perspective, 2 pioneering and ongoing clinical trials
are evaluating the efficacy of statins to control CCM progression
(Table 3).
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