11 research outputs found

    Hyperglycemia-associated Alzheimer’s-like symptoms and other behavioral effects attenuated by Plumeria obtusa L. Extract in alloxan-induced diabetic rats

    Get PDF
    Diabetes mellitus is a chronic metabolic complaint with numerous short- and long-term complications that harm a person’s physical and psychological health. Plumeria obtusa L. is a traditional medicine used in the treatment of diabetes to reduce complications related to behavior. Plumeria is a genus with antipsychotic activities. The objective of this study was to examine the effects of a methanolic extract of Plumeria obtusa L. in the attenuation of diabetes, on symptoms of Alzheimer disease, and on other associated behavioral aspects. A single dose of alloxan was administered to an experimental group of rats to induce development of diabetes (150 mg/kg, intraperitoneal) and the rats were then administered selected doses of methanolic extract of Plumeria obtusa L. (Po.Cr) or glibenclamide (0.6 mg/kg) for 45 consecutive days. Behavioral effects were evaluated using three validated assays of anxiety-related behavior: the open field test, the light and dark test, and the elevated plus maze. Anti-depressant effects of Plumeria obtusa L. were evaluated using the forced swim test (FST) and memory and learning were assessed using the Morris water maze (MWM) task. Po.Cr was also evaluated for phytochemicals using total phenolic content (TPC), total flavonoid content (TFC), and high-performance liquid chromatography assays, and antioxidant capability was assessed through assays of DPPH radical scavenging, total oxidation capacity, and total reducing capacity. In the alloxan-induced model of diabetes, the administration of Po.Cr and glibenclamide for 45 days produced a marked decrease (p < 0.001) in hyperglycemia compared to control animals. Po.Cr treatment also resulted in improvement in indicators, such as body weight and lipid profile (p < 0.05), as well as restoration of normal levels of alanine transaminase (ALT) (p < 0.001), a biomarker of liver function. Diabetic rats presented more Alzheimer-like symptoms, with greater impairment of memory and learning, and increased anxiety and depression compared to non-diabetic normal rats, whereas treated diabetic rats showed significant improvements in memory and behavioral outcomes. These results demonstrate that Po.Cr reversed alloxan-induced hyperglycemia and ameliorated Alzheimer-related behavioral changes, which supports additional study and assessment of conventional use of the plant to treat diabetes and associated behavioral complications

    Design of dual loop controller for boost converter based on PI controller

    No full text
    Boost converters are widely used in industry for many applications, such as electrical vehicles, wind energy systems, and photovoltaic energy systems, to step up the low voltages. Using the topology structure of the DC–DC boost circuit, this paper studied and designed a dual loop control method based on proportional integral controllers for improving the converter efficiency. The inner loop and outer loop controls of the traditional boost circuit are adopted in MATLAB/Simulink software to make the output of the system more stable. The input voltage is set to 24 V DC, and the desired output voltage varies from 36 to 48 V. Through simulation verification, the influence of a 1 kW sudden load connection by using a switch at a nominal output voltage of 48 V DC is studied, and the results show that it reduces the transient output voltage dips during the sudden load connection. Simulation analysis verifies the design scheme of the system, reduces the fluctuation in output voltage and power, reduces the output current ripple, minimizes the dip in voltage to a minimum possible value, and improves the dynamic characteristics and overall efficiency of the converter

    Rapid Synthesis of Gold Nanoparticles from Quercus incana and Their Antimicrobial Potential against Human Pathogens

    No full text
    In current study, bioreduction of tetrachloroauric acid (HAuCl4·3H2O) was carried out using leaves extract of Quercus incana for nanoparticle synthesis. The nanoparticles were characterized by ultraviolet visible spectrum (UV), Fourier-transform infrared (FT-IR), and transmission electron microscopy (TEM) analysis. The gold nanoparticles (GNPs) were generally clumpy agglomerates of polydispersed particles, with an average size in the range 5.5–10 nm. The Gas chromatography–mass spectrometry (GC–MS) qualitative analysis and FT-IR data supported the presence of bioactive compounds, which are responsible for the metal reduction and nanoparticles stabilization. The biocompatibility of synthesized GNPs was evaluated via antibacterial activity by using human bacterial pathogens. The results showed that synthesized GNPs showed enhanced antibacterial activity against all bacterial pathogens

    Ultra-Responses of Asphodelus tenuifolius L. (Wild Onion) and Convolvulus arvensis L. (Field Bindweed) against Shoot Extract of Trianthema portulacastrum L. (Horse Purslane)

    No full text
    Weed infestation is a prime challenge coupled with lowering crop production owing to their competition with crop plants for available resources such as nutrients, water, space, moisture, and sunlight. Among weed control methods, the implementation of synthetic herbicides offers an instant solution for getting rid of weeds; however, they are a direct source of potential hazards for humans and generate resistance against synthetic weedicides, making them less effective. Allelopathy is something that happens in nature that can be used as a weed control method that increases crop yield and decreases dependency on synthetic chemicals. The mode of action of some phytochemicals corresponds to synthetic herbicides. Due to this feature, allelochemicals are used as bio-herbicides in weed management and prove more environmentally friendly than synthetic weedicides. The present investigation aims to assess the ultra-responses of A. tenuifolius and C. arvensis, while growing them in a pot experiment. Various levels of shoot extract (L2, L3, and L4) of T. portulacastrum along with the L1 (distilled water) and L5 (synthetic herbicide) were applied to the weeds. Results indicated that aqueous extracts of shoot of T. portulacastrum significantly (p ≤ 0.05) affect all the measured traits of weeds and their effects were concentration specific. All morphological parameters were suppressed due to biotic stress with an increase in free amino acids and calcium ions along with a decline in metaxylem cell area and cortical thickness in the root, while the vascular bundle area increased. The shoot extract intrusive with metabolisms corresponded with the synthetic herbicide. It is concluded that Trianthema shoot extract has a powerful phytotoxic impact on weeds (A. tenuifolius and C. arvensis) and can be used in bio-herbicide production

    Bacteria Isolated from Wastewater Irrigated Agricultural Soils Adapt to Heavy Metal Toxicity While Maintaining Their Plant Growth Promoting Traits

    No full text
    The present study explored the plant growth promotion and bioremediation potential of bacteria inhabiting wastewater irrigated agricultural soils. Thirty out of 75 bacterial isolates (40%), 29/75 (39%) and 28/75 (37%) solubilized Zn, K and PO4 during plate essays respectively. Fifty-six percent of the isolates produced siderophores, while 30% released protease in vitro. Seventy-four percent of bacteria resisted Pb, Ni and Cd at various concentrations added to the culture media plates. Sixteen out of 75 (26%) isolates were able to fix N in Nbf medium. Among these 16 N fixers, N fixing nifH, nifD and nifK genes was detected through PCR in 8, 7 and 1 strain respectively using gene specific primers designed in the study with Enterobacter sp. having all three (nifHKD) genes. Isolated bacteria showed resemblance to diverse genera such as Bacillus, Pseudomonas, Enterobacter, Citrobacter, Acinetobacter, Serratia, Klebsiella and Enterococcus based on 16S rRNA gene sequence analysis. In addition to showing the best mineral solubilization and metal resistance potential, Citrobacter sp. and Enterobacter sp. also removed 87%, 79% and 43% and 86%, 78% and 51% of Ni, Cd and Pb, respectively, from aqueous solution. These potent bacteria may be exploited both for bioremediation and biofertilization of wastewater irrigated soils leading to sustainable agriculture

    Iron-Zinc Co-Doped Titania Nanocomposite: Photocatalytic and Photobiocidal Potential in Combination with Molecular Docking Studies

    No full text
    In the current research study, iron-zinc co-doped TiO2 was reported as an energy efficient material for the degradation of DIPA and inactivation of E. coli and S. aureus under visible light irradiation. In addition, molecular docking simulation was performed to provide further insight into possible targets for inhibiting bacterial development. The synthesized nanocomposites were screened and optimized for different synthesis and reaction parameters. The physicochemical properties of the synthesized nanocomposites were evaluated through different characterization techniques. The wet impregnation (WI) approach was among the most successful methods for the synthesis of Fe-Zn-TiO2 nanocomposite (NC) utilizing anatase titanium. Moreover, 66.5% (60 min reaction time) and 100% (190 min reaction time) chemical oxygen demand (COD) removal was obtained through optimized NC, i.e., 0.1Fe-0.4Zn metal composition and 300 °C calcination temperature. The energy consumption for the best NC was 457.40 KW h m−3. Moreover, 0.1Fe-0.4Zn-TiO2-300 was more efficient against S. aureus compared to E. coli with 100% reduction in 90 min of visible light irradiations. Furthermore, 0.1Fe-0.4Zn-TiO2-300 NC showed that the binding score for best docked conformation was −5.72 kcal mol−1 against β-lactamase from E. coli and −3.46 kcal mol−1 from S. aureus. The studies suggested the Fe-Zn in combination with TiO2 to be a possible inhibitor of β-lactamase that can be further tested in enzyme inhibition studies
    corecore