183 research outputs found

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s \sqrt{s} = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb1^{−1}. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred μm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD_{D}, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD_{D}) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD_{D}) (varying with m(ZD_{D})) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.[graphic not available: see fulltext

    Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H \toccˉ\mathrm{c\bar{c}}, produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at s\sqrt{s} = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb1^{-1}. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z \toccˉ\mathrm{c\bar{c}} in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ\sigma(VH)B \mathcal{B}(H \toccˉ\mathrm{c\bar{c}}) is 0.94 (0.50 0.15+0.22^{+0.22}_{-0.15}) pb at 95% confidence level (CL), corresponding to 14 (7.6 2.3+3.4^{+3.4}_{-2.3}) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κc\kappa_\mathrm{c}, the observed (expected) 95% CL interval is 1.1 <\lt κC\vert\kappa_\mathrm{C}\vert <\lt 5.5 (κc\vert\kappa_\mathrm{c}\vert <\lt 3.4), the most stringent constraint to date

    Search for CPCP violation in ttH and tH production in multilepton channels in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the tt \overline{\textrm{t}} H and tH associated production, using 138 fb1^{−1} of data collected in proton-proton collisions at s \sqrt{s} = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H → ττ and the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of CP -even from CP -odd scenarios. Two-dimensional confidence regions are set on κt_{t} and κt \overset{\sim }{\kappa } _{t}, which are respectively defined as the CP -even and CP -odd top-Higgs Yukawa coupling modifiers. No significant fractional CP -odd contributions, parameterized by the quantity |fCPHtt {f}_{CP}^{\textrm{Htt}} | are observed; the parameter is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H → ZZ and H → γγ decay modes, yielding two- and one-dimensional confidence regions on κt_{t} and κt \overset{\sim }{\kappa } _{t}, while |fCPHtt {f}_{CP}^{\textrm{Htt}} | is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.28 with an interval of |fCPHtt {f}_{CP}^{\textrm{Htt}} | < 0.55 at 68% confidence level, in agreement with the standard model CP -even prediction of |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.[graphic not available: see fulltext

    Measurement of the electroweak production of Wγ\gamma in association with two jets in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A measurement is presented for the electroweak production of a W boson, a photon (γ \gamma ), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1 ^{-1} . The cross section for the electroweak Wγ \gamma jj production is 23.5 4.7+4.9 ^{+4.9}_{-4.7} fb, whereas the total cross section for Wγ \gamma jj production is 113 ± \pm 13 fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters fM,25/Λ4f_{\mathrm{M},2{-}5}/\Lambda^4 and fT,67/Λ4f_{\mathrm{T},6{-}7}/\Lambda^4.A measurement is presented for the electroweak production of a W boson, a photon (γ), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13  TeV, corresponding to an integrated luminosity of 138  fb-1. The cross section for the electroweak Wγjj production is 23.5-4.7+4.9  fb, whereas the total cross section for Wγjj production is 113±13  fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters fM,2–5/Λ4 and fT,6–7/Λ4.A measurement is presented for the electroweak production of a W boson, a photon (γ\gamma), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The cross section for the electroweak Wγ\gammajj production is 23.5 4.7+4.9^{+4.9}_{-4.7} fb, whereas the total cross section for Wγ\gammajj production is 113 ±\pm 13 fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters fM,25f_\mathrm{M,2-5}//Λ4\Lambda^4 and fT,67f_\mathrm{T,6-7}//Λ4\Lambda^4

    Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s=13TeV\sqrt{s}=13\,\text {Te\hspace{-.08em}V}

    No full text
    International audienceProduction cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13TeV\,\text {Te\hspace{-.08em}V}. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016–2018 is used, corresponding to an integrated luminosity of 138fb1\,\text {fb}^{-1}. The signal strength modifier μ\mu , defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be μ=0.950.09+0.10\mu = 0.95^{+0.10}_{-0.09}. All results are found to be compatible with the standard model within the uncertainties
    corecore