126 research outputs found

    Closing the gap between electron and X-ray crystallography

    Get PDF
    The development of a proper refinement algorithm that takes into account dynamical scattering guarantees, for electron crystallography, results approaching X-rays in terms of precision, accuracy and reliability. The combination of such dynamical refinement and electron diffraction tomography establishes a complete pathway for the structure characterization of single sub-micrometric crystals.</jats:p

    Iterative algorithms in electron crystallography - a brief history

    Full text link

    Structural study of decrespignyite-(Y), a complex yttrium rare earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction

    Get PDF
    The crystal structure of the mineral decrespignyite-(Y) from the Paratoo copper mine (South Australia) has been obtained by applying d recycling direct methods to 3D electron diffraction (ED) data followed by Rietveld refinements of synchrotron data. The unit cell is a = 8.5462(2), c = 22.731(2) Å and V = 1437.8(2) Å3, and the chemical formula for Z = 1 is (Y10.35REE1.43Ca0.52Cu5.31 σ17.61(CO3)14Cl2.21(OH)16.79• 18.35H2O (REE. rare earth elements). The ED data are compatible with the trigonal P 3m1 space group (no. 164) used for the structure solution (due to the disorder affecting part of the structure, the possibility of a monoclinic unit cell cannot completely be ruled out). The structure shows metal layers perpendicular to [001], with six independent positions for Y, REE and Cu (sites M1 to M4 are full, and sites M5 and M6 are partially vacant), and two other sites, Cu1 and Cu2, partially occupied by Cu. One characteristic of decrespignyite is the existence of hexanuclear (octahedral) oxo-hydroxo yttrium clusters [Y6(μ6-O)(μ3-OH)8O24] (site M1) with the 24 bridging O atoms belonging to two sets of symmetry-independent.CO3/2- ions, with the first set (2×) along a ternary axis giving rise to a layer of hexanuclear clusters and the second set (6×) tilted and connecting the hexanuclear clusters with hetero-tetranuclear ones hosting Cu, Y and REE (M2 and M3 sites). The rest of the crystal structure consists of two consecutive M3 C M4 layers containing the partially occupied M5, M6, and Cu2 sites and additional carbonate anions in between. The resulting structure model is compatible with the chemical analysis of the type material which is poorer in Cu and richer in (REE, Y) than the above-described material.Fil: Rius, Jordi. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Colombo, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Vallcorba, Oriol. Alba Synchrotron Light Facility; EspañaFil: Torrelles, Xavier. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de los Materiales de Barcelona; EspañaFil: Gemmi, Mauro. Istituto Italiano di Tecnologia. Center for Nanotechnology Innovation; ItaliaFil: Mugnaioli, Enrico. Istituto Italiano di Tecnologia. Center for Nanotechnology Innovation; Itali

    Two New Organic Co-Crystals Based on Acetamidophenol Molecules

    Get PDF
    Herein we present two new organic co-crystals obtained through a simple solution growth process based on an acetamidophenol molecule, either paracetamol or metacetamol, and on 7,7,8,8-tetracyanoquinodimethane (TCNQ). These co-crystals are part of a family of potential organic charge transfer complexes, where the acetamidophenol molecule behaves as an electron donor and TCNQ behaves as an electron acceptor. Due to the sub-micron size of the crystalline domains, 3D electron diffraction was employed for the structure characterization of both systems. Paracetamol-TCNQ structure was solved by standard direct methods, while the analysis of metacetamol-TCNQ was complicated by the low resolution of the available diffraction data and by the low symmetry of the system. The structure determination of metacetamol-TCNQ was eventually achieved after merging two data sets and combining direct methods with simulated annealing. Our study reveals that both paracetamol-TCNQ and metacetamol-TCNQ systems crystallize in a 1:1 stoichiometry, assembling in a mixed-stack configuration and adopting a non-centrosymmetric P1 symmetry. It appears that paracetamol and metacetamol do not form a strong structural scaffold based on hydrogen bonding, as previously observed for orthocetamol-TCNQ and orthocetamol-TCNB (1,2,4,5-tetracyanobenzene) co-crystals

    A multimethodic approach for the characterization of manganiceladonite, a new member of the celadonite family from Cerchiara mine, Eastern Liguria, Italy

    Get PDF
    In the manganesiferous ores associated with the metacherts of the ophiolitic sequences at the Cerchiara mine, Eastern Liguria (Italy), a new Mn-bearing mineral belonging to the mica group has been recently found and characterized. High resolution transmission electron microscopy and electron diffraction tomography studies confirm that the mineral belongs to the mica group. Unit-cell parameters from the powder diffraction pattern are: a = 5.149(1), b = 8.915(1), c = 10.304(1) Å, β = 102.03(1)°, space group C2 or C2/m. On the basis of the electron paramagnetic resonance spectroscopic results, the Mn4+ content represents a very subordinate fraction of the total Mn, the remaining occurring as Mn3+. The Raman spectrum clearly indicates the presence of OH groups in the structure. Laser-ablation inductively-coupled-plasma mass-spectrometry measurements assess the presence of considerable amounts of Li. Assuming all Mn as Mn3+ and 22 negative charges, the empirical formula can be expressed as: (K0.83□0.17)(Mn3þ 1:14Mg0.80Li0.20Fe3þ 0:02)(Si3.89Al0.10)O10[(OH)1.92F0.08] with the sum of the octahedral cations indicating a ‘transitional’ character between a di- and a tri-octahedral structure. This formula corresponds ideally to the Mn3+ analogue of celadonite, thus expanding the range of solid solution in the celadonite family. The ideal end-member formula KMn3+MgSi4O10(OH)2 can be easily related to celadonite by the homovalent substitution VIMn3+ → VIFe3+. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, (IMA 2015-052)
    • …
    corecore