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ABSTRACT The pharmaceutical metaxalone (MTX) was obtained as a conglomerate Form A-

R/S, via a newly reported crystallization method exploiting volatile deep eutectic solvents. 

Homochiral crystals of Form A-S, could previously be obtained only by crystallization from 

enantiopure MTX, synthesized from enantiopure starting materials, and never from a racemic 

solution of MTX. Homochiral crystals of Form A-R were obtained here concomitantly for the first 

time. Powder X-ray diffraction and chiral high performance liquid chromatography were used to 

infer that the structure of the crystals obtained were a conglomerate relating to the known Form 

A-S. However, this pathway results in exclusively micron-sized needles, below typical structural 

solution size, and so 3D electron diffraction, combining low-dose continuous acquisition and a 

dedicated single-electron detector was used for ab-initio structural solution of Form A-R/S. 

Crystallization via volatile deep eutectic solvents allowed the structural landscape of metaxalone 

to be further explored, adding a point to its phase diagram. This example highlights the possibility 



 

2 
 

for symbiotic relationships between structural solution via electron diffraction and crystallisation 

pathways which do not result in crystals of a suitable size and quality for single-crystal X-ray 

diffraction. 

 

INTRODUCTION 

One-third of crystalline organic molecules are reported as polymorphic, i.e. able to adopt multiple 

molecular arrangements and form distinct crystal structures. This number is estimated to rise to a 

value of three-quarters if thoroughly screened.1 Polymorphism in active pharmaceutical 

ingredients (APIs), in particular, is a prevalent and pressing industrial issue, with around half of 

market APIs being able to crystallize into two or more polymorphs.2 This change in molecular 

arrangement can have significant effects on crucial physicochemical properties of the API, most 

importantly the solubility rate and polymorphic stability, which in turn, can affect bioavailability 

and the commercial feasibility of a bioactive substance.3 It is also paramount to uncover all low 

energy structures to prevent late-appearing polymorphs, which may be more stable than the 

commercially distributed bio-active polymorph. In the cases of Ritonavir and Dapsone, the 

occurrence of a late-appearing polymorph decimated commercial stocks, leading to these drugs 

being recalled and subjected to a time- and resource-intensive reformulation.3,4 Finding new routes 

of crystallization to select the desired polymorph or to screen for unknown polymorphs of an API 

is a key component of pharmaceutical research into current-market APIs, making clear the need 

for thorough polymorphic screening during pre-formulation.5’
6

’
7 

 Metaxalone, 5-[(3,5-dimethylphenoxy)methyl]-2-oxazolidinone (MTX) is one such 

polymorphic API. It is a common skeletal muscle relaxant (brand name Skelaxin), that relieves 

musculoskeletal conditions, particularly muscles spasms and back pain.8 Along with around 90% 
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of new chemical entities under consideration for being bought to market,9 MTX belongs to the 

Biopharmaceutics Classification System (BCS) Class II drugs of high intestinal permeability but 

low solubility.10 This makes MTX an ideal candidate for structural studies, as a new polymorph 

may have improved dissolution rates, reducing the dose quantity or frequency it must be taken, 

and thus reducing undesirable side-effects for the patient.11 

 MTX was first synthesized in 1960 by Lunsford et al.12 The two racemic polymorphs of 

MTX (Forms A-rac and B-rac), were first established in 2007 and registered in 2010.13 However, 

their crystal structures, stability relationship and dissolution profiles have been reported only as 

recently as 2011.14 Form A-rac is readily crystallized from organic solvents and transforms upon 

solvent assisted grinding into Form B-rac, the thermodynamically most stable polymorph.14 The 

MTX molecule (Figure 1) is rotationally flexible on either side of the central ether moiety, 

affording the possibility of conformational polymorphism. Indeed, MTX is conformationally 

distinct in Forms A-rac and B-rac.  

  

Figure 1. The molecular structure of metaxalone (left) and the three distinct conformers present 

in its two racemic polymorphs (right): in Form A-rac two distinct conformers are found (orange 

and green) while in form in Form B-rac a single conformer is present (purple). The benzene ring 

with hydrocarbons is the same for the three conformers and is coloured grey and the stereoisomeric 

centre of metaxalone is outlined in black for each.   
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Besides conformation, chirality has an even more prominent effect on the bioactivity of an API. 

Enantiomers may possess markedly different biological activity, such as in dl-threo-

methylphenidate (Ritalin) of which the d-threo-enantiomer has a 10-fold increase in potency 

compared to the l-threo15and has been developed as an enantiopure treatment for ADHD in its own 

right. This makes separation of enantiomers a desirable step in the pharmaceutical production 

process. A possible route to achieve this is via direct racemic resolution methods such as 

preferential crystallization. However, this first requires the formation of a conglomerate.16 Recent 

negative reports of racemic metaxalone suggests indeed that one enantiomer may be more 

pharmaceutically desirable.17,18  

In light of this, a recently synthesized and analyzed enantiopure polymorph of MTX (Form 

A-S) was reported in 2018 by Bredikhin et al., named for its similarity to the conformation of one 

of the conformers present in Form A-rac (Figure 1 - orange) and similarity of the hydrogen-

bonding motif present in the crystal structure of Form A-rac.6 Form A-rac crystallizes in the 

triclinic space group P1̅ and has two independent molecules in the asymmetric unit (Z’=2) (Figure 

2a), with different conformations. Form B-rac crystallizes in the monoclinic space group P21/c 

with just one molecule in the asymmetric unit (Z’=1) (Figure 2c). Form A-S crystallizes in the 

orthorhombic space group P212121 and has only one molecule in the asymmetric unit (Z’=1), 

forming a crystal structure comprised solely of a catamer bonding arrangement of the S-enantiomer 

(Figure 2c). A stark similarity between the three forms of MTX is the presence of synthons along 

the crystallographic a-axis. Form A-rac and Form A-S contain homochiral infinite chains of 
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hydrogen-bonds (C-type synthons) (Figure 2d and e), while Form B-rac is comprised of 

heterochiral intermolecular rings of hydrogen-bonds (R-type synthons) (Figure 2f). 

Figure 2. Unit cells of metaxalone (a) Form A-rac, with its two conformers shown in green and 

orange, (b) Form A-S, coloured to match its conformational counterpart present in Form A-rac and 

(c) Form B-rac with a single conformer. Synthons of (d) Form A-rac and (e) Form A-S, both 

containing homochiral infinite chains of hydrogen-bonds (C-type synthons), and (f) Form B-rac, 

which contains heterochiral rings of hydrogen-bonds (R-type synthon). Hydrogen-bonds are 

shown by blue dashed lines. 

 

 Form A-rac MTX is readily crystallized from racemic MTX using standard organic 

solvents with the exception of crystallization from ethyl acetate, which results in the concomitant 

growth of Form A-rac and B-rac.14 Form B-rac can also be obtained by solvent-assisted mechanical 

grinding of Form A-rac or from a slurry of racemic MTX.14,19 Both A-rac and B-rac are racemic 

crystals, which is expected for a chiral molecule; 90-95% of chiral molecules crystallize as racemic 

crystals, i.e. forming heterochiral centrosymmetric crystal structures, while only 5-10% of chiral 

molecules crystallize instead as homochiral conglomerates.20 
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 Enantiopure S-MTX was prepared by a 2-step synthesis described by Bredikhin et al..19 

Starting from enantiopure S-MTX, Form A-S was then recrystallized from a mixture of ethanol 

and chloroform. Moreover, in the same study, the authors also synthesized a new, metastable, 

racemic polymorph of MTX (Form C-rac) via crystallization of a supercooled melt of the 

appropriate composition. They were not able to prepare crystals of Form C-rac suitable for single-

crystal X-ray structure solution, so the presence of a new structure was based on thermal 

measurements and comparison of its powder X-ray diffraction pattern to known forms. 

 To further explore the structural landscape of MTX, a new room temperature and pressure 

(RTP) crystallization pathway was employed, which makes use of volatile deep eutectic solvents 

(VODES). This pathway has recently demonstrated its potential in reaching hard-to-access crystal 

polymorphs in other pharmaceutical systems, notably allowing RTP and additive-free access to 

Form II paracetamol and the structure solution of ortho-cetamol to be obtained.21,22 In accordance 

with typical eutectic solvents, these are a binary mixture made up of a hydrogen bond donator and 

hydrogen bond acceptor. However, unlike typical deep eutectic solvents, one of these co-formers 

acts as the volatile component, escaping the system, and the remaining sample forms a crystalline 

product.  

 The hydrogen bond donating and accepting relationship in the VODES results in strong 

interactions between the desired molecular material and the undesirable volatile co-former. This 

bonding relationship may be comparable to solvates, which are a co-crystal between the compound 

and solvent, which undergo a desolvation step to produce a final crystalline product. This process 

often leads to a unit cell which is a contracted analogue to the solvate, because the molecules move 

to fill the voids where the solvent was.23 In other cases the hydrogen bonds are broken, and the 

crystal lattice is destroyed. While the preservation of a crystal lattice is likely to result in larger, 
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high-quality crystals, the destruction of the lattice and its subsequent reformation may instead 

result in small, poor-quality crystals. 

One difficulty when a new polymorph is formed via VODES is the common occurrence of 

micro and nano-sized crystals which are not of sufficient size to be solved by single-crystal X-ray 

diffraction (scXRD).  To achieve the structure solution of such micro/nano-sized crystals, recent 

progresses have been made in the field of electron diffraction (ED),24 bringing together low-dose 

acquisition technologies and dedicated single-electron detectors25,26. The small size of the electron 

beam (in the range of few hundreds of nanometres) and the strong interaction of electrons with 

matter, allow single crystal data collection on crystal grains as small as 100 nm.27 This 3D ED 

approach, which consists of collecting of a sequence of patterns during a continuous or stepwise 

rotation of the sample under the electron beam, can be performed in very low illumination 

conditions (0.01 el Å-2 s-1) minimising damage to the sample.28 Although the diffraction signal 

becomes very weak in these conditions, a new generation of direct electron detectors can record 

diffraction spots generated by fewer electrons, since they can detect single-electron arrivals and at 

the same time are devoid of background noise. ED intensities extracted from 3D ED data 

collections have been demonstrated to be quasi-kinematical and can therefore be used successfully 

for ab-initio structure solution of challenging beam-sensitive samples, such as 

pharmaceuticals.22,29,30,31  

 Here, MTX was directly crystallized at RTP from a VODES with phenol (PhOH) as the 

volatile co-former. Powder X-ray diffraction (pXRD) was used to compare the resultant crystals 

to known forms. Ab-initio structural solution, obtained via 3D ED, matched the known structure 

of Form A-S. From these data, both the racemic compound Form A-rac and the conglomerate Form 

A-R/S were crystallized from racemic MTX starting material.  
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EXPERIMENTAL SECTION 

 Sample Preparation. The eutectic system in this paper was comprised of MTX 

(Carbosynth, ≥98%) and crystalline PhOH (Sigma-Aldrich, ≥99%). Molar ratio samples of 

PhOH:MTX were made to total 1 g ±0.5 mg. The solid mixtures spontaneously form a eutectic 

liquid and to ensure homogeneity and consistency between samples, the mixtures were left in an 

oven at 50 ℃ for 24 hrs. The prepared samples were in the molar range 1:1-10:1 (PhOH:MTX).  

 Samples in the range 3:1-10:1 formed liquids stable to below -5 °C. A droplet of each of 

these solutions was pipetted onto a glass slide and the PhOH allowed to dissociate. The resulting 

MTX crystals were then characterized by optical imaging, NMR, pXRD, differential scanning 

calorimetry (DSC), chiral-high performance liquid chromatography (chiral-HPLC) column and 

3D ED. At a ratio of 3:1 (PhOH:MTX), Form A-R/S was obtained with Form A-rac crystallising 

in the range 4:1-10:1, denoted as ≥4:1 throughout.  

 Physical Characterization. Optical images of crystals grown on glass slides were taken 

using a Nikon D7200 DSLR and a Glub 156 J. Swift & Son optical microscope with cross-

polarized filters. SEM micrographs were taken on a JEOL IT300. Proton NMR spectra were 

obtained from 10 mg of sample dissolved in 0.7 ml of deuterated dimethyl sulfoxide (DMSO-D6, 

Sigma-Aldrich, 99.5%) using a JEOL ECS 400 NMR spectrometer.  

 Powder XRD patterns were obtained using a Bruker D8 Advance diffractometer fitted with 

a PSD LynxEye Detector (Cu Kα radiation wavelength of 1.5418 Å). Data were recorded from 5° 

to 50° 2θ, using a step size of 0.0131°/2θ and hold time of 1.02 s. Samples were gently ground into 

a fine powder with pestle and mortar and flattened onto silicon zero diffraction holders.  
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 Thermal analysis was performed using a TA Instruments DSC 25 Discovery. The DSC was 

purged with nitrogen at a cell purge rate of 50 mL/min, all measurements were taken using 5-15 

mg of sample sealed in hermetic pans. The temperature profile used was a heat/cool/heat cycle 

between 30 °C and 150 °C, at a heating rate of 10 °C/min. 

  Thermograms were analysed using TRIOS software (version: 4.5.0.42498). Both 

endothermic melting transition onsets were calculated from their extrapolated onsets with a linear 

baseline. Calibrations were carried out using an indium standard (temperature = 156.6 ± 0.5 °C, 

enthalpy = 28.72 J g-1 ± 4%).  

 Enantiomeric composition analysis. The enantiomeric composition of the sample 

crystallized from VODES (redissolved in 1-5 mg/ml, in ethanol (EtOH)) was analytically 

quantified using Chiral High-Performance Liquid Chromatography (chiral-HPLC). A chiral-

HPLC column (Astec CHIROBIOTIC® V, 250 x 21 mm, 5 μm) and an isocratic mobile phase 

was employed (100% CH3CN: 0.1% v/v TFA: 0.1% v/v Et3N; 0.2 mL min-1 flow rate and 5 μL 

injection volumes) to achieve separation. All elution traces were monitored spectroscopically at 

245, 254 and 280 nm. The retention times of the synthesized enantiomers were directly compared 

against a commercially pure (>95%), racemic standard (1-5 mg/ml, in EtOH). 

 Electron crystallography. High angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) imaging and ED data were recorded with a Zeiss Libra 120 TEM 

operating at 120 kV and equipped with a LaB6 source. 

 3D ED was performed in STEM mode after defocusing the beam in order to have a pseudo-

parallel illumination on the sample, as described in Lanza et al.32 ED patterns were collected in 

Köhler parallel illumination with a beam size in a range of 150-200 nm in diameter obtained by a 

5 µm C2 condenser aperture and recorded by a single-electron ASI MEDIPIX detector.25  
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 Continuous data collection was performed while the TEM goniometer was rotating at 

constant angular speed.26,28 Such data-collection mode guarantees a similar geometry to that used 

for scXRD experiments. An extremely low-dose illumination, corresponding to 0.01 el s-1Å-2,32 

allowed data to be acquired at room temperature without fast amorphization of the sample under 

the electron beam. 

 3D ED data were analyzed using the software PETS.33 Ab-initio structure determination 

was obtained by standard direct methods (SDM) as implemented in the software SIR2014.34 Data 

were treated with a fully kinematical approximation, assuming that Ihkl was proportional to |Fhkl|
2. 

Least-square structure refinement was performed with the software SHELXL.35  

 

RESULTS AND DISCUSSION 

 Crystallization of MTX by VODES. MTX was found to form a stable VODES with 

PhOH acting as the hydrogen bond donor in this pair. Mixtures in the range 3:1-10:1 (PhOH:MTX) 

formed a eutectic liquid at RTP in sealed vials, and remained stable indefinitely within the 

observed time range. Molar ratios below this range were not liquid and above this range resulted 

in the crystallization of the PhOH co-former. After 36-48 hours exposure to RTP conditions, the 

liquid was crystallized but with some PhOH remaining in the system, and after 5-7 days the PhOH 

was found to have completely disassociated from the droplets of eutectic mixtures, yielding 

crystalline MTX. 

 A distinct morphology can be observed for the MTX crystals obtained from crystallization 

via VODES with the ratios 3:1 and those obtained from ≥4:1. As can be seen in Figure 3a, at a 

ratio of 3:1 the crystallization typically resulted in a feathered macromorphology. Optical 

microscopy using polarized light shows that each feathered needle is made up of a dense 
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agglomeration of crystals resulting in almost no observable birefringence (Figure 3b). Scanning 

electron microscopy (SEM) found that this lack of birefringence was due to the apparent feathered 

macromorphology being comprised solely of sub-micron width needle-like crystals (Figure 3c). 

While at ratios ≥4:1, droplets predominantly resulted in dense circular macromorphologies made 

up of many fibrous birefringent crystals (Figure 3d and e). Unpolarized light images of all crystals 

are shown in Figure S1.  

 

Figure 3. (a) Digital, (b) cross-polarized filtered light and (c) scanning electron microscopy images 

of crystals obtained by crystallization from phenol:metaxalone (PhOH:MTX) volatile deep 

eutectic solvent, from a ratio of 3:1 (PhOH:MTX). (d) Digital and (e) cross-polarized filtered light 

images of the fibrous crystals produced at ratios ≥4:1 (PhOH:MTX).  
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 From a ratio of 3:1 (PhOH:MTX), typically the crystals obtained were feathered crystals 

(Form A-R/S) and from ratios ≥4:1, the majority of crystals grown were the of fibrous morphology 

(Form A-rac), with the stochastic occurrence of concomitant crystallisation (Figure 4). To further 

refine this boundary, a screen was performed at 0.2 increments between the ratios of 3:1 and 4:1, 

in this instance, all ratios were dominated by the feathered morphology, with the exception of 

3.8:1, which was exclusively of fibrous morphology. This implies that the starting molar ratio of 

co-formers strongly influences the final crystalline product. It may be that a ratio of 3.8:1 leads to 

the formation of a particular stoichiometry of pre-nucleation clusters (PNCs) or MTX-phenol 

solvate that facilitates the growth of Form A-rac over Form A-R/S. The presence of low-melting 

co-crystals in DESs have been reported36 and it is well known that the formation of solvates can 

act as a precursor for new polymorphs.37 

 

Figure 4. Proportion of metaxalone (MTX) that crystallized as Form A-rac (yellow), Form A-R/S 

(pink) or as a mixture, from volatile deep eutectic solvents in the molar range 3:1-10:1 

(phenol:MTX) (left) and in 0.2 increments between 3:1-4:1(right).  
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Proton NMR was used to confirm that all PhOH was completely removed from the system, 

to within the sensitivity of NMR, leaving behind pure MTX crystals of either fibrous or feather-

like morphologies (Figure S2 (1) and (2), respectively). Powder XRD was used to compare the 

resultant crystals with previously known forms of MTX, shown in Figure 5. The fibrous crystals 

(≥4:1) were found to be the commonly obtained polymorph, Form A-rac (red).14 Powder XRD 

analysis of the feather-like crystals directly after crystallization revealed a distinct unknown 

powder pattern (blue) that could not be matched to any of the known MTX or PhOH forms (Figure 

S3). NMR revealed that these structures were phenol solvates of MTX by determining the presence 

of phenol (Figure S4), the NMR indicates a stoichiometry of 3:1 MTX:PhOH molecules in the 

MTX-phenol solvate crystal structure. Unexpectedly, pXRD analysis of the MTX-phenol solvate 

crystals after being left for 5-7 days were able to be matched to the homochiral Form A-S (green),19 

thus indicating the formation of an enantiomeric conglomerate. This seems to suggest that the 

intermediate MTX-phenol solvate produced via volatile eutectic crystallization is also molecularly 

homochiral and de-solvates to give enantiopure microcrystals. Wider angle ranges, 5-50 °, of all 

pXRD patterns are shown in Figure S5. 
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Figure 5. Powder X-ray diffraction patterns of metaxalone (MTX) crystals grown from volatile 

deep eutectic mixtures with phenol (PhOH). Crystals obtained from a molar ratio of ≥4:1 

(PhOH:MTX) were indexed to the common Form A-rac (red) and from a ratio of 3:1 were 

unindexable to any known forms (blue). This was found to be an unknown MTX-phenol solvate 

and desolvation of this phenol solvate resulted in crystals that were able to be indexed to the 

homochiral MTX Form A-S (green). 

  

 To quantify the enantiomeric ratio of Form A-R/S relative to a commercially prepared 

racemic sample of Form A-rac MTX, a chiral-HPLC column was performed both on the feathered 

crystals and the starting material. As can be seen in Figure 6, the ratios of the UV-absorbance 

intensities corresponding to the two enantiomers of MTX leaving the column are identical for the 

starting material and Form A-R/S. As Form A-rac is industrially considered to be a racemate we 
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use this to confirm that Form A-R/S has indeed also racemic composition, with equivalent ratios 

of each enantiomer present in the starting and final product, as expected. 

 

Figure 6. The chiral-HPLC chromatograms of metaxalone Form A-rac, known to be racemic, 

(orange) and the conglomerate Form A-R/S (green). The ratio of the UV-absorbance intensities 

corresponding to each enantiomer eluting from the column are the same in Form A-rac and Form 

A-R/S, with a negligible impurity peak eluted from the Form A-R/S solution. The elution profile 

of the chromatograms was acquired using UV-VIS spectroscopy at a wavelength of 280 nm. 

 

 Powder XRD and chiral-HPLC suggest that our racemic mixture has resulted in a 

homochiral conglomerate comprised of crystal structures related to the known Form A-S, however, 

this crystallization pathway to Form A-R/S MTX exclusively forms small, low-quality crystals; 

this makes Form A-R/S unsuitable for structural solution via scXRD.  

 3D ED of MTX nanocrystals. Crystal structure was later obtained using ED. A few 

needles of the conglomerate polymorph were gently crushed and directly loaded on a carbon-
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coated Cu TEM grid without any solvent. 3D ED data were recorded from three crystal fragments 

with size ranging from 400 nm to 1.2 μm (Figure 7a). 3D ED acquisitions were performed in tilt 

ranges from 70° to 100°. Camera length was 180 mm, allowing resolution in real space of 0.7 Å. 

 3D ED data analysis showed that all data sets were consistent with a primitive 

orthorhombic cell with approximate parameters a = 5.5(1) Å, b = 10.4(2) Å, c = 19.7(4) Å (Figure 

7b).  A close look on the main planes of 3D ED reconstructions revealed that reflections h00 :  h 

≠ 2n and 00l : l ≠ 2n were missing. The reciprocal 0k0 direction was not sampled and therefore the 

presence of a screw axis along b could not be ruled out. There are only two orthorhombic space 

groups consistent with this extinction features: P21221 (18) and P212121 (19). No structure solution 

for MTX Form A-R/S was obtained in space group P21221 (18), while a clear model was obtained 

ab-inito by SDM in space group P212121 (19). 

 The structure of MTX Form A-R/S was solved ab-initio by SDM in space group P212121 

(19). The MTX molecule was clearly recognizable and all 16 non-hydrogen atoms of the structure 

were spotted by automatic routines. Cell parameters were then refined against pXRD data. The 

structural model was eventually least-squares refined against 3D ED data using SHELXL35 (Figure 

7c). Geometrical ties were added stepwise to check the consistency of the model. All hydrogen 

atoms were generated in geometrically idealized positions. More details about structure 

determination and refinement are listed in Table 1. 
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Figure 7. (a) HAADF-STEM image of MTX crystal fragments. (b) MTX diffraction volume 

reconstructed based on the 3D ED data. (c) Structure of MTX Form A-R/S after least-squares 

refinement against 3D ED data. 

 

Polymorph MTX Form A-R/S 

Temperature [K / °C] 298 / 25 

Empirical formula C12H15NO3 

Formula weight [g mol-1] 221.26 
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Wavelength [Å] 0.0335 

Crystal system orthorhombic 

Space group (No.) P212121 (19) 

Unit cell determination [Å,°] a = 5.5(1)     

b = 10.4(2)     

c = 19.7(4)     

α = β = γ = 90 

Volume [Å3] 1127(38) 

Z 4 

Dcalc [g cm-3] 1.304 

F(000) 179 

Reflections measured [No.] 3771 

Reflections independent [No.] 1404 

Rint (F
2) 0.5156 

Θ range [°] 0.104-1.066 

Completeness [%] 74.2 

Reflections (> 4σ) [No.] 561 

Restraints 18 

Parameters 53 

R1 (> 4σ) 0.3895 

R1 (all) 0.4875 

GooF 2.152 

Restrained GooF 2.151 
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Table 1: Selected parameters from the SDM structure determination by SIR2014 and the structure 

refinement by SHELXL. 

 

 3D ED attests that the crystal structure is equivalent to that of the reported enantiopure 

Form A-S. This, allows us to conclude unambiguously that MTX has crystallized as a 

conglomerate and is best referred to as Form A-R/S. It must be pointed out that once the structure 

is known, the PXRD pattern can typically be used as a confirmation of its nature. However, here 

the solution is obtained with 3D ED, which, together with the VODES crystallization, forms a 

proof of concept of a powerful crystallization to solution method. 

 Thermal investigation of the three polymorphs of MTX. DSC thermograms of Form A-

rac and Form A-R/S crystallized from VODES were obtained to assess their relative stabilities 

(Figure 8). Form A-rac was found to have an endothermic event at 122 °C.  Form A-R/S was found 

to display an initial endotherm at 115 °C followed by a small exotherm and then a further 

endotherm at 122 °C. On subsequent heat/cool cycles only the higher temperature endothermic 

event at 122 °C is observed.  
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Figure 8. Differential scanning calorimetry of metaxalone (MTX) crystallized from volatile deep 

eutectic solvents with phenol (PhOH). Thermogram of Form A-rac grown from a ratio of ≥4:1 

(PhOH:MTX) (red) which undergoes an endothermic event at 122 °C and Form A-R/S grown from 

a ratio of 3:1 which undergoes an endothermic event at 115 °C followed by a small exotherm 

before undergoing a second endothermic event at 122 °C (blue). All thermograms were taken at a 

ramp rate of 10 °C/min from heat/cool cycles between 30 °C and 150 °C. 

 

 The endothermic event observed for Form A-rac here agrees well with the reported melting 

point (121.9 ± 0.1 °C14 and 122.4 °C19). It is likely that the first endotherm observed for Form A-

R/S at 115 °C is its melting point and so the DSC data confirm that Form A-R/S is indeed a 

metastable form of MTX. The second endotherm observed at 122 °C is likely to correspond to the 

melting event of one of the more stable racemic forms of MTX (Form A or B) as the repeated 
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melting point observation on subsequent heat/cool cycles suggests that the same crystal form 

consistently recrystallizes in the hermetically sealed DSC pan thereafter. It cannot be explicitly 

stated which polymorph forms from this data as the reported melting points for Forms A-rac and 

B-rac are extremely close, both in the range 121 °C – 123 °C. 14,19 pXRD analysis of Form A-R/S 

was used to confirm phase purity before DSC and so Form A-R/S must be either melting and 

recrystallizing as Form A/B or transforming directly. The presence of a small exotherm between 

the melting endotherms is indicative of Form A-R/S simultaneously melting and recrystallizing as 

a more stable form and hence reducing the apparent enthalpy of the exotherm. The melting point 

obtained for Form A-R/S is significantly lower than for the enantiopure Form A-S, reported to be 

144.4 °C, while here a melting point of 115 °C was observed.19 This is a known feature of 

conglomerates, for which the melting point increases with increasing enantiomeric excess, being 

highest for an enantiopure phase and lowest at racemic composition.38 

 

CONCLUSION  

An enantiomeric conglomerate of MTX (Form A-R/S) was obtained via crystallization from a 

PhOH based VODES at a molar ratio of 3:1 (PhOH:MTX), while the more thermodynamically 

stable Form A-rac was obtained from the range of ratios 4:1-10:1. Crystals of Form A-rac, were 

obtained with a fibrous morphology, distinct from typically observed plate-like crystals,14 while 

Form A-R/S crystals grew as large feathered structures, which were revealed to be made up of 

aggregated micro-needles. The pXRD pattern of Form A-R/S was found to match that of the 

previously synthesized enantiopure Form A-S and the phase identification was confirmed by ab-

initio structure solution performed by 3D ED. VODESs therefore represent a RTP method to 

crystallize racemic MTX as a conglomerate of enantiopure crystals, a result which had not been 
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achieved so far for this API. Formation of a conglomerate via a desolvation-like process in which 

the co-former spontaneously leaves the system, may open up a new avenue by which to achieve 

racemic resolution. This could be particularly important for chiral molecules unresolvable by 

current industrially standard methods, such as via formation of diastereomeric salts.39 In cases such 

as this, where a new route of crystallization consistently produces crystals below a standard and 

quality for scXRD, 3D ED has shown that it is possible to overcome these challenges. This serves 

as a proof-of-concept that 3D ED can form a symbiotic relationship with crystallization from a 

new kind of volatile deep eutectic solvent. We expect that the synergy of VODES crystallization 

and 3D ED structural characterization will shed new light on several API structural landscapes 

where nanocrystallization has been the limiting factor.  
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