65 research outputs found

    Point vibration measurements for the detection of shallow-buried objects

    Get PDF
    AbstractA major UK initiative, entitled ‘Mapping the Underworld’, is seeking to address the serious social, environmental and economic consequences arising from an inability to locate accurately and comprehensively the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and application of this technique for detecting buried infrastructure is currently being investigated. Here, the potential for making a number of simple point vibration measurements in order to detect shallow-buried objects, in particular plastic pipes, is explored. Point measurements can be made relatively quickly without the need for arrays of surface sensors, which can be expensive, time-consuming to deploy, and sometimes impractical in congested areas.At low frequencies, the ground behaves as a simple single-degree-of-freedom (mass–spring) system with a well-defined resonance, the frequency of which will depend on the density and elastic properties of the soil locally. This resonance will be altered by the presence of a buried object whose properties differ from the surrounding soil. It is this behavior which can be exploited in order to detect the presence of a buried object, provided it is buried at a sufficiently shallow depth. The theoretical background is described and preliminary measurements are made both on a dedicated buried pipe rig and on the ground over a domestic waste pipe. Preliminary findings suggest that, for shallow-buried pipes, a measurement of this kind could be a quick and useful adjunct to more conventional methods of buried pipe detection

    Wavenumber prediction and measurement of axisymmetric waves in buried fluid-filled pipes: Inclusion of shear coupling at a lubricated pipe/soil interface

    Full text link
    Acoustic methods have been widely used to detect water leaks in buried fluid-filled pipes, and these technologies also have the potential to locate buried pipes and cables. Relatively predictable for metal pipes, there is considerably more uncertainty with plastic pipes, as the wave propagation behaviour becomes highly coupled between the pipe wall, the contained fluid and surrounding medium. Based on the fully three-dimensional effect of the surrounding soil, pipe equations for n=0 axisymmetric wave motion are derived for a buried, fluid-filled pipe. The characteristics of propagation and attenuation are analysed for two n=0 waves, the s=1 wave and s=2 wave, which correspond to a predominantly fluid-borne wave and a compressional wave predominantly in the shell, respectively. At the pipe/soil interface, two extreme cases may be considered in order to investigate the effects of shear coupling: the “slip” condition representing lubricated contact; and the “no slip” condition representing compact contact. Here, the “slip” case is considered, for which, at low frequencies, analytical expressions can be derived for the two wavenumbers, corresponding to the s=1 and s=2 waves. These are both then compared with the situations in which there is no surrounding soil and in which the pipe is surrounded by fluid only, which cannot support shear. It is found that the predominant effect of shear at the pipe/soil interface is to add stiffness along with damping due to radiation. For the fluid-dominated wave, this causes the wavespeed to increase and increases the wave attenuation. For the shell-dominated wave there is little effect on the wavespeed but a marked increase in wave attenuation. Comparison with experimental measurements confirms the theoretical finding

    Strategies to parallelize ILP systems

    Get PDF
    It is well known by Inductive Logic Programming (ILP) practionersthat ILP systems usually take a long time to nd valuable models(theories). The problem is specially critical for large datasets, preventingILP systems to scale up to larger applications. One approach to reducethe execution time has been the parallelization of ILP systems. In thispaper we overview the state-of-the-art on parallel ILP implementationsand present work on the evaluation of some major parallelization strategiesfor ILP. Conclusions about the applicability of each strategy arepresented

    Mapping the underworld multi-sensor device creation, assessment, protocols: Acoustic technologies advancement to support multi-sensor device. An assessment of the use of a scanning laser to measure ground vibration

    No full text
    This report concerns experimental work undertaken at ISVR under the EPSRC-funded ‘Mapping the Underworld’ programme, phase 2, EP/F065973/1. In the experimental work reported here, using a scanning laser is compared with using geophones for the measurement of ground vibration at low frequencies (typically <500Hz).The performance of the sensors was compared on a number of different ground surfaces. For all the surfaces, there was general agreement between the laser data and the geophone data; the laser performed better on some surfaces than others, but the laser data was consistently of poorer quality than the geophone data. Surface velocity was found to be the key factor in determining data quality, rather than the surface texture itself; for most of the tests, the surface velocities were close to the laser system noise floor.A number of ways to improve data quality were investigated including altering the surface texture, either by removal of surface dust/grit or by applying retroreflective tape, high pass filtering, signal averaging, both spatially and in the time/frequency domain, and using different types of input signal.Finally, effects of the laser stand-off distance were assessed

    A shear wave ground surface vibration technique for the detection of buried pipes

    No full text
    A major UK initiative, entitled ‘Mapping the Underworld’ aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics; the application of this technology for detecting buried infrastructure, in particular pipes, is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured. Time-extended signals are employed to generate the illuminating wave. Generalized cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation are calculated and summed using a stacking method to generate a cross-sectional image of the ground. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal can be used as an additional reference when calculating the cross-correlation functions. Measurements have been made at two live test sites to detect a range of buried pipes. Successful detection of the pipes was achieved, with the use of the additional reference signal proving beneficial in the noisier of the two environments

    ‘Mapping the Underworld’: recent developments in vibro-acoustic techniques to locate buried infrastructure

    No full text
    A major UK initiative entitled Mapping the Underworld (MTU) is seeking to address the serious social, environmental and economic consequences arising from an inability to locate – accurately and comprehensively – buried utility service infrastructure without resorting to extensive excavations. MTU aims to develop and prove the efficacy of a multi sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and a number of different vibro-acoustic methods for detecting buried infrastructure have been investigated. The latest developments in the vibro-acoustic location research are presented here. Three complementary methods are described, one of which involves direct excitation of the buried asset and the other two require no such direct access. All involve measurement of the ground surface vibration as a result of the excitation, whether of the ground or of the buried asset directly. Together, these techniques constitute a substantial step change in the way buried infrastructure can be detected using vibro-acoustic methods

    Acoustic power flow in fluid filled tubes and cavities

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX172529 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Leak noise propagation and attenuation in submerged plastic water pipes

    No full text
    Detection of water leaks in buried distribution pipes using acoustic methods is common practice in many countries. Correlation techniques are widely used in leak detection, and these have been extremely effective when attempting to locate leaks in metal pipes. However, a number of difficulties have been highlighted when trying to determine the position of leaks in plastic pipes. Of particular interest here is what happens to the leak noise when the pipe passes through an expanse of water, such as across a river or lake.In this paper, the low-frequency acoustic propagation and attenuation characteristics of a submerged plastic water pipe are investigated experimentally in the laboratory, supported by predictions from a theoretical model. It is found that, whilst the signal attenuation for a submerged pipe is increased relative to that for a similar in-vacuo pipe, energy does not, in fact, radiate into the water; furthermore, the attenuation is small compared with that for a pipe buried in soil. <br/
    • …
    corecore