60 research outputs found

    Performance benchmarking microplate-immunoassays for quantifying target-specific cysteine oxidation reveals their potential for understanding redox-regulation and oxidative stress

    Get PDF
    The antibody-linked oxi-state assay (ALISA) for quantifying target-specific cysteine oxidation can benefit specialist and non-specialist users. Specialists can benefit from time-efficient analysis and high-throughput target and/or sample n-plex capacities. The simple and accessible “off-the-shelf” nature of ALISA brings the benefits of oxidative damage assays to non-specialists studying redox-regulation. Until performance benchmarking establishes confidence in the “unseen” microplate results, ALISA is unlikely to be widely adopted. Here, we implemented pre-set pass/fail criteria to benchmark ALISA by robustly evaluating immunoassay performance in diverse biological contexts. ELISA-mode ALISA assays were accurate, reliable, and sensitive. For example, the average inter-assay CV for detecting 20%- and 40%-oxidised PRDX2 or GAPDH standards was 4.6% (range: 3.6–7.4%). ALISA displayed target-specificity. Immunodepleting the target decreased the signal by ∌75%. Single-antibody formatted ALISA failed to quantify the matrix-facing alpha subunit of the mitochondrial ATP synthase. However, RedoxiFluor quantified the alpha subunit displaying exceptional performance in the single-antibody format. ALISA discovered that (1) monocyte-to-macrophage differentiation amplified PRDX2-specific cysteine oxidation in THP-1 cells and (2) exercise increased GAPDH-specific cysteine oxidation in human erythrocytes. The “unseen” microplate data were “seen-to-be-believed” via orthogonal visually displayed immunoassays like the dimer method. Finally, we established target (n = 3) and sample (n = 100) n-plex capacities in ∌4 h with 50–70 min hands-on time. Our work showcases the potential of ALISA to advance our understanding of redox-regulation and oxidative stress

    Performance benchmarking microplate-immunoassays for quantifying target-specific cysteine oxidation reveals their potential for understanding redox-regulation and oxidative stress

    Get PDF
    The antibody-linked oxi-state assay (ALISA) for quantifying target-specific cysteine oxidation can benefit specialist and non-specialist users. Specialists can benefit from time-efficient analysis and high-throughput target and/or sample n-plex capacities. The simple and accessible “off-the-shelf” nature of ALISA brings the benefits of oxidative damage assays to non-specialists studying redox-regulation. Until performance benchmarking establishes confidence in the “unseen” microplate results, ALISA is unlikely to be widely adopted. Here, we implemented pre-set pass/fail criteria to benchmark ALISA by robustly evaluating immunoassay performance in diverse biological contexts. ELISA-mode ALISA assays were accurate, reliable, and sensitive. For example, the average inter-assay CV for detecting 20%- and 40%-oxidised PRDX2 or GAPDH standards was 4.6% (range: 3.6–7.4%). ALISA displayed target-specificity. Immunodepleting the target decreased the signal by ∌75%. Single-antibody formatted ALISA failed to quantify the matrix-facing alpha subunit of the mitochondrial ATP synthase. However, RedoxiFluor quantified the alpha subunit displaying exceptional performance in the single-antibody format. ALISA discovered that (1) monocyte-to-macrophage differentiation amplified PRDX2-specific cysteine oxidation in THP-1 cells and (2) exercise increased GAPDH-specific cysteine oxidation in human erythrocytes. The “unseen” microplate data were “seen-to-be-believed” via orthogonal visually displayed immunoassays like the dimer method. Finally, we established target (n = 3) and sample (n = 100) n-plex capacities in ∌4 h with 50–70 min hands-on time. Our work showcases the potential of ALISA to advance our understanding of redox-regulation and oxidative stress

    Exercise decreases PP2A-specific reversible thiol oxidation in human erythrocytes:Implications for redox biomarkers

    Get PDF
    New readily accessible systemic redox biomarkers are needed to understand the biological roles reactive oxygen species (ROS) play in humans because overtly flawed, technically fraught, and unspecific assays severely hamper translational progress. The antibody-linked oxi-state assay (ALISA) makes it possible to develop valid ROS-sensitive target-specific protein thiol redox state biomarkers in a readily accessible microplate format. Here, we used a maximal exercise bout to disrupt redox homeostasis in a physiologically meaningful way to determine whether the catalytic core of the serine/threonine protein phosphatase PP2A is a candidate systemic redox biomarker in human erythrocytes. We reasoned that: constitutive oxidative stress (e.g., haemoglobin autoxidation) would sensitise erythrocytes to disrupted ion homeostasis as manifested by increased oxidation of the ion regulatory phosphatase PP2A. Unexpectedly, an acute bout of maximal exercise lasting ˜16 min decreased PP2A-specific reversible thiol oxidation (redox ratio, rest: 0.46; exercise: 0.33) without changing PP2A content (rest: 193 pg/ml; exercise: 191 pg/ml). The need for only 3-4 Όl of sample to perform ALISA means PP2A-specific reversible thiol oxidation is a capillary-fingertip blood-compatible candidate redox biomarker. Consistent with biologically meaningful redox regulation, thiol reductant-inducible PP2A activity was significantly greater (+10%) at rest compared to exercise. We establish a route to developing new readily measurable protein thiol redox biomarkers for understanding the biological roles ROS play in humans

    An acute dose of inorganic dietary nitrate does not improve high-intensity, intermittent exercise performance in temperate or hot and humid conditions

    Get PDF
    Purpose: Dietary nitrate (NO3-) has repeatedly been shown to improve endurance and intermittent, high-intensity events in temperate conditions. However, the ergogenic effects of dietary NO3- on intermittent exercise performance in hot conditions has yet to be investigated. Methods: In a randomised, counterbalanced, double-blind crossover study, twelve 5recreationally trained males ingested a nitrate-rich beetroot juice shot (BRJ) (6.2 mmol NO3-) or a nitrate-depleted placebo (PLA) (0.05). There was a reduced peak (BRJ: 659±100W vs. PLA: 693±139W; p=0.056) and mean power (BRJ: 543±29W vs PLA: 575±38W; p=0.081) following BRJ compared to PLA in the hot and humid condition, but this was not statistically significant. There was no effect of supplement on total work done irrespective of environmental 69 condition. However, ~75% of participants experienced performance decreases following BRJ 70 in the hot and humid environment. No differences were observed between trials for tympanic 71 temperature measured at the conclusion of the exercise trial. Conclusion: In conclusion, an acute dose of inorganic dietary NO3- does not improve repeated sprint performance in either temperate, or hot and humid conditions

    LC/MS-based discrimination between plasma and urine metabolomic changes following exposure to ultraviolet radiation by using data modelling

    Get PDF
    Introduction: This study sought to compare between metabolomic changes of human urine and plasma to investigate which one can be used as best tool to identify metabolomic profiling and novel biomarkers associated to the potential effects of ultraviolet (UV) radiation. Method: A pilot study of metabolomic patterns of human plasma and urine samples from four adult healthy individuals at before (S1) and after (S2) exposure (UV) and non-exposure (UC) were carried out by using liquid chromatography-mass spectrometry (LC–MS). Results: The best results which were obtained by normalizing the metabolites to their mean output underwent to principal components analysis (PCA) and Orthogonal Partial least squares-discriminant analysis (OPLS-DA) to separate pre-from post-of exposure and non-exposure of UV. This separation by data modeling was clear in urine samples unlike plasma samples. In addition to overview of the scores plots, the variance predicted-Q2 (Cum), variance explained-R2X (Cum) and p-value of the cross-validated ANOVA score of PCA and OPLS-DA models indicated to this clear separation. Q2 (Cum) and R2X (Cum) values of PCA model for urine samples were 0.908 and 0.982, respectively, and OPLS-DA model values were 1.0 and 0.914, respectively. While these values in plasma samples were Q2 = 0.429 and R2X = 0.660 for PCA model and Q2 = 0.983 and R2X = 0.944 for OPLS-DA model. LC–MS metabolomic analysis showed the changes in numerous metabolic pathways including: amino acid, lipids, peptides, xenobiotics biodegradation, carbohydrates, nucleotides, Co-factors and vitamins which may contribute to the evaluation of the effects associated with UV sunlight exposure. Conclusions: The results of pilot study indicate that pre and post-exposure UV metabolomics screening of urine samples may be the best tool than plasma samples and a potential approach to predict the metabolomic changes due to UV exposure. Additional future work may shed light on the application of available metabolomic approaches to explore potential predictive markers to determine the impacts of UV sunlight

    An examination of objectively-measured sedentary behavior and mental well-being in adults across week days and weekends

    Get PDF
    BackgroundLimited research has explored the links between sedentary behaviour, mental health and quality of life. This study examines objectively measured sedentary behaviour and perceived mental health and quality of life across week days and weekends.Methods42 adults (19M, 23F; mean age 38yrs (range 18–67) & BMI 24.8kg/m2 (range 18.7–33.8) wore an activPAL monitor 24h/day for one week and completed the Hospital Anxiety and Depression Scale (HADS) and SF12 Health Survey. Average weekday and weekend day sitting time was computed. Differences between sitting (Group 1 = 10hrs/day) and components of the HADS and SF12 health survey were examined using an ANCOVA with a measure of physical activity (step count) included as a covariate.ResultsAverage sitting time on a weekday was 9hrs 29mins (range 5hrs 52mins to 12hrs 55mins) and 8hrs 59mins (range 4hrs, 07mins to 14hrs, 40mins) on a weekend day. There was a main effect (p 0.05). No main effects were found for weekend sitting (p > 0.05).ConclusionsWeekday sitting time below 8 hours/day is associated with better perceived mental health and quality of life

    Performance benchmarking microplate-immunoassays for quantifying target-specific cysteine oxidation reveals their potential for understanding redox-regulation and oxidative stress

    Get PDF
    The antibody-linked oxi-state assay (ALISA) for quantifying target-specific cysteine oxidation can benefit specialist and non-specialist users. Specialists can benefit from time-efficient analysis and high-throughput target and/or sample n-plex capacities. The simple and accessible “off-the-shelf” nature of ALISA brings the benefits of oxidative damage assays to non-specialists studying redox-regulation. Until performance benchmarking establishes confidence in the “unseen” microplate results, ALISA is unlikely to be widely adopted. Here, we implemented pre-set pass/fail criteria to benchmark ALISA by robustly evaluating immunoassay performance in diverse biological contexts. ELISA-mode ALISA assays were accurate, reliable, and sensitive. For example, the average inter-assay CV for detecting 20%- and 40%-oxidised PRDX2 or GAPDH standards was 4.6% (range: 3.6–7.4%). ALISA displayed target-specificity. Immunodepleting the target decreased the signal by ∌75%. Single-antibody formatted ALISA failed to quantify the matrix-facing alpha subunit of the mitochondrial ATP synthase. However, RedoxiFluor quantified the alpha subunit displaying exceptional performance in the single-antibody format. ALISA discovered that (1) monocyte-to-macrophage differentiation amplified PRDX2-specific cysteine oxidation in THP-1 cells and (2) exercise increased GAPDH-specific cysteine oxidation in human erythrocytes. The “unseen” microplate data were “seen-to-be-believed” via orthogonal visually displayed immunoassays like the dimer method. Finally, we established target (n = 3) and sample (n = 100) n-plex capacities in ∌4 h with 50–70 min hands-on time. Our work showcases the potential of ALISA to advance our understanding of redox-regulation and oxidative stress

    Does Connected Health Technology Improve Health-Related Outcomes in Rural Cardiac Populations? Systematic Review Narrative Synthesis

    Get PDF
    Individuals living in rural areas are more likely to experience cardiovascular diseases (CVD) and have increased barriers to regular physical activity in comparison to those in urban areas. This systematic review aimed to understand the types and effects of home-based connected health technologies, used by individuals living in rural areas with CVD. The inclusion criteria included technology deployed at the participant’s home and could be an mHealth (smart device, fitness tracker or app) or telehealth intervention. Nine electronic databases were searched across the date range January 1990–June 2021. A total of 207 full texts were screened, of which five studies were included, consisting of 603 participants. Of the five studies, four used a telehealth intervention and one used a form of wearable technology. All interventions which used a form of telehealth found a reduction in overall healthcare utilisation, and one study found improvements in CVD risk factors. Acceptability of the technologies was mixed, in some studies barriers and challenges were cited. Based on the findings, there is great potential for implementing connected health technologies, but due to the low number of studies which met the inclusion criteria, further research is required within rural areas for those living with cardiovascular disease
    • 

    corecore