16 research outputs found

    Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates

    Get PDF
    The Cockayne syndrome B (CSB) protein—defective in a majority of patients suffering from the rare autosomal disorder CS—is a member of the SWI2/SNF2 family with roles in DNA repair and transcription. We demonstrate herein that purified recombinant CSB and the major human apurinic/apyrimidinic (AP) endonuclease, APE1, physically and functionally interact. CSB stimulates the AP site incision activity of APE1 on normal (i.e. fully paired) and bubble AP–DNA substrates, with the latter being more pronounced (up to 6-fold). This activation is ATP-independent, and specific for the human CSB and full-length APE1 protein, as no CSB-dependent stimulation was observed with Escherichia coli endonuclease IV or an N-terminal truncated APE1 fragment. CSB and APE1 were also found in a common protein complex in human cell extracts, and recombinant CSB, when added back to CSB-deficient whole cell extracts, resulted in increased total AP site incision capacity. Moreover, human fibroblasts defective in CSB were found to be hypersensitive to both methyl methanesulfonate (MMS) and 5-hydroxymethyl-2′-deoxyuridine, agents that introduce base excision repair (BER) DNA substrates/intermediates

    Cockayne syndrome group B protein has novel strand annealing and exchange activities

    Get PDF
    Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, severe neurological abnormalities and prageroid symptoms. The CS complementation group B (CSB) protein is involved in UV-induced transcription coupled repair (TCR), base excision repair and general transcription. CSB also has a DNA-dependent ATPase activity that may play a role in remodeling chromatin in vivo. This study reports the novel finding that CSB catalyzes the annealing of complementary single-stranded DNA (ssDNA) molecules with high efficiency, and has strand exchange activity. The rate of CSB-catalyzed annealing of complementary ssDNA is 25-fold faster than the rate of spontaneous ssDNA annealing under identical in vitro conditions and the reaction occurs with a high specificity in the presence of excess non-homologous ssDNA. The specificity and intrinsic nature of the reaction is also confirmed by the observation that it is stimulated by dephosphorylation of CSB, which occurs after UV-induced DNA damage, and is inhibited in the presence of ATPγS. Potential roles of CSB in cooperation with strand annealing and exchange activities for TCR and homologous recombination are discussed

    Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair

    Get PDF
    Background: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol b-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER

    Loop openness: a video reflection on the open work of art

    No full text
    The objective of this article is to reflect on the video art work in its loop production to perceive the possibility of it being received as an open work. In order to contextualize this reflection the text is anchored in the concept of image-crystal from Gilles Deleuze. For the purpose of empirically explore theoretical concepts such as video art, open work and image-crystal it was produced a practical project of video art that intends to reflect on the notion of time in a context of a loop exhibition. Therefore this project aims to motivate the reflection on the loop as a mechanism to contour the ephemeral character of video art and, at the same time, it seeks to emphasize questions about the element of multiplicity and plurality in art. It is a scientific and artistic project in which the practical component supports the dialectic between theory and practice, action and reflection. In this sense, based on the video entitled "The Walk" this article demonstrates how the theoretical concepts were used to support the artistic creation. Finally the conclusions sustain that the work of video art, when presented in loop, is a creative and expository strategy which encourages multiple interpretations that vary according to the narrative, the context in which it takes place and the attitude and the background of the spectator

    Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells

    No full text
    Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis

    Investigation of base excision repair gene variants in late-onset Alzheimer's disease.

    No full text
    Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer's disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase β (POLβ) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLβ rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLβ variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or-translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk

    Targeting mitochondrial DNA polymerase gamma for selective inhibition of MLH1 deficient colon cancer growth

    No full text
    Synthetic lethality in DNA repair pathways is an important strategy for the selective treatment of cancer cells without harming healthy cells and developing cancer-specific drugs. The synthetic lethal interaction between the mismatch repair (MMR) protein, MutL homolog 1 (MLH1), and the mitochondrial base excision repair protein, DNA polymerase γ (Pol γ) was used in this study for the selective treatment of MLH1 deficient cancers. Germline mutations in the MLH1 gene and aberrant MLH1 promoter methylation result in an increased risk of developing many cancers, including nonpolyposis colorectal and endometrial cancers. Because the inhibition of Pol γ in MLH1 deficient cancer cells provides the synthetic lethal selectivity, we conducted a comprehensive small molecule screening from various databases and chemical drug library molecules for novel Pol γ inhibitors that selectively kill MLH1 deficient cancer cells. We characterized these Pol γ inhibitor molecules in vitro and in vivo, and identified 3,3’-[(1,1’-Biphenyl)-4’,4’-diyl)bis(azo)]bis[4-amino-1-naphthalenesulfonic acid] (congo red; CR; Zinc 03830554) as a high-affinity binder to the Pol γ protein and potent inhibitor of the Pol γ strand displacement and one-nucleotide incorporation DNA synthesis activities in vitro and in vivo. CR reduced the cell proliferation of MLH1 deficient HCT116 human colon cancer cells and suppressed HCT116 xenograft tumor growth whereas it did not affect the MLH1 proficient cell proliferation and xenograft tumor growth. CR caused mitochondrial dysfunction and cell death by inhibiting Pol γ activity and oxidative mtDNA damage repair, increasing the production of reactive oxygen species and oxidative mtDNA damage in MLH1 deficient cells. This study suggests that the Pol γ inhibitor, CR may be further evaluated for the MLH1 deficient cancers’ therapy

    Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    No full text
    Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide excision repair and base excision repair. Here, we describe a new interaction partner for CSB, the DNA glycosylase NEIL2. Using both cell extracts and recombinant proteins, CSB and NEIL2 was found to physically interact independently of DNA. We further found that CSB is able to stimulate NEIL2 glycosylase activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed, showing an increase in cytoplasmic CSB and NEIL2 co-localization after oxidative stress. Additionally, stalling of the progression of the transcription bubble with α-amanitin resulted in increased co-localization of CSB and NEIL2. Finally, CSB knockdown resulted in reduced incision of 8-hydroxyguanine in a DNA bubble structure using whole cell extracts. Taken together, our data supports a biological role for CSB and NEIL2 in transcription associated base excision repair
    corecore