36 research outputs found

    Neurological Correction of Lysosomal Storage in a Mucopolysaccharidosis IIIB Mouse Model by Adeno-associated Virus-Mediated Gene Delivery

    Get PDF
    AbstractMucopolysaccharidosis (MPS) IIIB is characterized by mild somatic features and severe neurological diseases leading to premature death. No definite treatment is available for MPS IIIB patients. We constructed two recombinant adeno-associated virus (rAAV) vectors containing the human α-N-acetylglucosaminidase (NaGlu) cDNA driven by either a CMV or a neuron-specific enolase (NSE) promoter. In vitro, these rAAV vectors mediated efficient expression of recombinant NaGlu in human MPS IIIB fibroblasts and mouse MPS IIIB somatic and brain primary cell cultures. The secreted rNaGlu was taken up by both human and mouse MPS IIIB cells in culture and degraded the accumulated glycosaminoglycans (GAG). A direct microinjection (107 viral particles, 1 μl/10 minutes per injection) of vectors containing the NSE promoter resulted in long-term (6 months, the duration of the experiments) expression of rNaGlu in multiple brain structures/areas of adult MPS IIIB mice. Consistent with previous studies, the main target cells were neurons. However, while vector typically transduced an area of 400–500 μm surrounding the infusion sites, the correction of GAG storage involved neurons of a much broader area (1.5 mm) in a 6-month duration of experiments. These results provide a basis for the development of a treatment for neurological disease in MPS IIIB patients using AAV vectors

    Levels of glycosaminoglycans in the cerebrospinal fluid of healthy young adults, surrogate-normal children, and Hunter syndrome patients with and without cognitive impairment.

    Get PDF
    In mucopolysaccharidoses (MPS), glycosaminoglycans (GAG) accumulate in tissues. In MPS II, approximately two-thirds of patients are cognitively impaired. We investigated levels of GAG in cerebrospinal fluid (CSF) in different populations from four clinical studies (including NCT00920647 and NCT01449240). Data indicate that MPS II patients with cognitive impairment have elevated levels of CSF GAG, whereas those with the attenuated phenotype typically have levels falling between those of the cognitively affected patients and healthy controls

    A phase I/II study of intrathecal idursulfase-IT in children with severe mucopolysaccharidosis II

    Get PDF
    Approximately two-thirds of patients with the lysosomal storage disease mucopolysaccharidosis II have progressive cognitive impairment. Intravenous (i.v.) enzyme replacement therapy does not affect cognitive impairment because recombinant iduronate-2-sulfatase (idursulfase) does not penetrate the blood-brain barrier at therapeutic concentrations. We examined the safety of idursulfase formulated for intrathecal administration (idursulfase-IT) via intrathecal drug delivery device (IDDD). A secondary endpoint was change in concentration of glycosaminoglycans in cerebrospinal fluid. Sixteen cognitively impaired males with mucopolysaccharidosis II who were previously treated with weekly i.v. idursulfase 0.5 mg/kg for ≥6 months were enrolled. Patients were randomized to no treatment or 10-mg, 30-mg, or 1-mg idursulfase-IT monthly for 6 months (four patients per group) while continuing i.v. idursulfase weekly. No serious adverse events related to idursulfase-IT were observed. Surgical revision/removal of the IDDD was required in 6 of 12 patients. Twelve total doses were administrated by lumbar puncture. Mean cerebrospinal fluid glycosaminoglycan concentration was reduced by approximately 90% in the 10-mg and 30-mg groups and approximately 80% in the 1-mg group after 6 months. These preliminary data support further development of investigational idursulfase-IT in MPS II patients with the severe phenotype who have progressed only to a mild-to-moderate level of cognitive impairment.Genet Med advance online publication 02 April 2015Genetics in Medicine (2015); doi:10.1038/gim.2015.36

    The role of enzyme replacement therapy in severe Hunter syndrome—an expert panel consensus

    Get PDF
    Intravenous enzyme replacement therapy (ERT) with idursulfase for Hunter syndrome has not been demonstrated to and is not predicted to cross the blood–brain barrier. Nearly all published experience with ERT with idursulfase has therefore been in patients without cognitive impairment (attenuated phenotype). Little formal guidance is available on the issues surrounding ERT in cognitively impaired patients with the severe phenotype. An expert panel was therefore convened to provide guidance on these issues. The clinical experience of the panel with 66 patients suggests that somatic improvements (e.g., reduction in liver volume, increased mobility, and reduction in frequency of respiratory infections) may occur in most severe patients. Cognitive benefits have not been seen. It was agreed that, in general, severe patients are candidates for at least a 6–12-month trial of ERT, excluding patients who are severely neurologically impaired, those in a vegetative state, or those who have a condition that may lead to near-term death. It is imperative that the treating physician discuss the goals of treatment, methods of assessment of response, and criteria for discontinuation of treatment with the family before ERT is initiated. Conclusion: The decision to initiate ERT in severe Hunter syndrome should be made by the physician and parents and must be based on realistic expectations of benefits and risks, with the understanding that ERT may be withdrawn in the absence of demonstrable benefits

    Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain

    Get PDF
    AbstractThe blood–brain barrier is the main obstacle to efficient delivery of therapeutic reagents, including viral vectors, into the central nervous system (CNS) for treating global CNS diseases. In this study, the effects of mannitol infusions on global brain gene expression of a novel AAV vector were examined after intravenous (iv) or intracisternal injection. Initially, a self-complementary adeno-associated virus serotype 2 vector (scAAV) was compared to traditional single-stranded AAV2 vector for reporter gene expression in the brain of adult mice with or without pretreatment of an iv mannitol infusion. One to two months postinjection, analysis of vector-transduced green fluorescent protein (GFP) expression in the brain revealed that vector delivery to the CNS via iv injection required pretreatment with mannitol. This expression was observed only when scAAV vectors were used. Using these conditions, transgene expression was observed in various neurons and glial cells throughout the brain. The peripherally administered scAAV vectors also transduced the cells in multiple somatic tissues with efficient expression in liver (20–30% of hepatocytes), but was less efficient in other somatic tissues. Intracisternal injection of scAAV vector produced a broad and intense transgene expression in both neurons and glial cells in the CNS of injected mice ranging from the olfactory area to the brain stem and spinal cord. More than 50% of the Purkinje cells in the cerebellum expressed GFP. Intravenous infusion of mannitol before intracisternal injection of the scAAV vector enhanced the dispersion of the vector in the CNS. Further optimization of these steps combining peripheral and intracisternal scAAV gene delivery should facilitate the development of treatments for global CNS diseases, especially diseases involving both the somatic system and the CNS, such as lysosomal storage disorders

    Recommendations for the management of MPS IVA: systematic evidence- and consensus-based guidance.

    Get PDF
    IntroductionMucopolysaccharidosis (MPS) IVA or Morquio A syndrome is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of the N-acetylgalactosamine-6-sulfatase (GALNS) enzyme, which impairs lysosomal degradation of keratan sulphate and chondroitin-6-sulphate. The multiple clinical manifestations of MPS IVA present numerous challenges for management and necessitate the need for individualised treatment. Although treatment guidelines are available, the methodology used to develop this guidance has come under increased scrutiny. This programme was conducted to provide evidence-based, expert-agreed recommendations to optimise management of MPS IVA.MethodsTwenty six international healthcare professionals across multiple disciplines, with expertise in managing MPS IVA, and three patient advocates formed the Steering Committee (SC) and contributed to the development of this guidance. Representatives from six Patient Advocacy Groups (PAGs) were interviewed to gain insights on patient perspectives. A modified-Delphi methodology was used to demonstrate consensus among a wider group of healthcare professionals with experience managing patients with MPS IVA and the manuscript was evaluated against the validated Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument by three independent reviewers.ResultsA total of 87 guidance statements were developed covering five domains: (1) general management principles; (2) recommended routine monitoring and assessments; (3) disease-modifying interventions (enzyme replacement therapy [ERT] and haematopoietic stem cell transplantation [HSCT]); (4) interventions to support respiratory and sleep disorders; (5) anaesthetics and surgical interventions (including spinal, limb, ophthalmic, cardio-thoracic and ear-nose-throat [ENT] surgeries). Consensus was reached on all statements after two rounds of voting. The overall guideline AGREE II assessment score obtained for the development of the guidance was 5.3/7 (where 1 represents the lowest quality and 7 represents the highest quality of guidance).ConclusionThis manuscript provides evidence- and consensus-based recommendations for the management of patients with MPS IVA and is for use by healthcare professionals that manage the holistic care of patients with the intention to improve clinical- and patient-reported outcomes and enhance patient quality of life. It is recognised that the guidance provided represents a point in time and further research is required to address current knowledge and evidence gaps

    Ten years of the Hunter Outcome Survey (HOS) : insights, achievements, and lessons learned from a global patient registry

    Get PDF
    Mucopolysaccharidosis type II (MPS II; Hunter syndrome; OMIM 309900) is a rare lysosomal storage disease with progressive multisystem manifestations caused by deficient activity of the enzyme iduronate-2-sulfatase. Diseasespecific treatment is available in the form of enzyme replacement therapy with intravenous idursulfase (Elaprase®, Shire). Since 2005, the Hunter Outcome Survey (HOS) has collected real-world, long-term data on the safety and effectiveness of this therapy, as well as the natural history of MPS II. Individuals with a confirmed diagnosis of MPS II who are untreated or who are receiving/have received treatment with idursulfase or bone marrow transplant can be enrolled in HOS. A broad range of disease- and treatment-related information is captured in the registry and, over the past decade, data from more than 1000 patients from 124 clinics in 29 countries have been collected. Evidence generated from HOS has helped to improve our understanding of disease progression in both treated and untreated patients and has extended findings from the formal clinical trials of idursulfase. As a long-term, global, observational registry, various challenges relating to data collection, entry, and analysis have been encountered. These have resulted in changes to the HOS database platform, and novel approaches to maximize the value of the information collected will also be needed in the future. The continued evolution of the registry should help to ensure that HOS provides further insights into the burden of the disease and patient care and management in the coming years
    corecore