38 research outputs found

    Effect of HIV infection on the acute antibody response to malaria antigens in children: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sub-Saharan Africa, the distributions of malaria and HIV widely overlap. Among pregnant and non-pregnant adults, HIV affects susceptibility to malaria, its clinical course and impairs antibody responses to malaria antigens. However, the relationship between the two diseases in childhood, when most deaths from malaria occur, is less clear. It was previously reported that HIV is associated with admission to hospital in rural Kenya with severe malaria among children, except in infancy. HIV-infected children with severe malaria were older, had higher parasite density and increased mortality, raising a hypothesis that HIV interferes with naturally acquired immunity to malaria, hence with little effect at younger ages (a shorter history of exposure). To test this hypothesis, levels of anti-merozoite and schizont extract antibodies were compared between HIV-infected and uninfected children who participated in the original study.</p> <p>Methods</p> <p>IgG responses to malaria antigens that are potential targets for immunity to malaria (AMA1, MSP2, MSP3 and schizont extract) were compared between 115 HIV-infected and 115 age-matched, HIV-uninfected children who presented with severe malaria. The children were classified as high and low responders for each antigen and assigned antibody-response breadth scores according to the number of antigens to which they were responsive. A predictive logistic regression model was used to test if HIV was an effect modifier on the age-related acquisition of antibody responses, with age as a continuous variable.</p> <p>Results</p> <p>Point estimates of the responses to all antigens were lower amongst HIV-infected children, but this was only statistically significant for AMA1 (P = 0.028). HIV-infected children were less likely to be high responders to AMA1 [OR 0.44 (95%CI, 0.2-0.90) P = 0.024]. HIV was associated with a reduced breadth of responses to individual merozoite antigens (P = 0.02). HIV strongly modified the acquisition of antibodies against schizont extract with increasing age (P < 0.0001), but did not modify the rate of age-related acquisition of responses to individual merozoite antigens.</p> <p>Conclusions</p> <p>In children with severe malaria, HIV infection is associated with a lower magnitude and narrower breadth of IgG responses to merozoite antigens and stunting of age-related acquisition of the IgG antibody response to schizont extract.</p

    Cellular architecture of spinal granulomas and the immunological response in tuberculosis patients coinfected with HIV

    Get PDF
    Mycobacterium tuberculosis (M.tb) and HIV are individually responsible for the most deaths worldwide among all infectious agents, and coinfection with M.tb and HIV is a significant public health challenge in the developing world. Although the lung is the primary target organ for tuberculosis (TB), M.tb can also cause extrapulmonary tuberculosis (EPTB) such as in the bones and joints. Treatment of EPTB is much more challenging than treatment of pulmonary TB. The hallmark of the host immune response against TB is the formation of organized structures called granulomas that are infiltrated with immune cells and are rich in cytokines and chemokines. Inside granulomas, the host confines the M.tb bacteria to a particular region of the organ and avoids dispersion. In this study, we analyzed immune cells in bone granulomas of patients with EPTB that are also coinfected with HIV. We found that HIV-infected TB patients have dispersed bone granulomas, with reduced T cell numbers and a concomitant increase in plasma cells. Additionally, HIV-infected patients exhibited dramatically increased serum levels of IgM and IgG1 antibodies, which is indicative of T-cell-independent B-cell activation and mucosal T-cell activation, respectively. Interestingly, we also observed that CD29+ stem cells are increased in HIV–TB coinfection, suggesting a link with HIV infection. Therefore, our work provides new insights into the architecture of spinal TB granulomas and the role of B-cells and humoral immunity against a highly infectious intracellular pathogen. We propose that our findings will inform biomarker identification for EPTB and possibly the development of related therapeutics and/or vaccines to protect HIV-infected patients against disseminated TB

    Tuberculous meningitis is associated with higher cerebrospinal HIV-1 viral loads compared to other HIV-1-associated meningitides.

    Get PDF
    To gain a better understanding of the immunopathogenesis of tuberculous meningitis (TBM) and identify potential diagnostic biomarkers that may discriminate TBM from other HIV-1-associated meningitides, we assessed HIV-1 viral load levels, drug resistance patterns in antiretroviral therapy (ART)-experienced patients with persistent viremia and soluble immunological analytes in peripheral blood and cerebrospinal fluid (CSF) of HIV-1 infected patients with TBM versus other meningitides. One hundred and three matched blood and CSF samples collected from HIV-1 infected patients with TBM or other meningitides presenting at a hospital in Durban, South Africa, from January 2009 to December 2011 were studied. HIV-1 RNA and 28 soluble immunological potential biomarkers were quantified in blood plasma and CSF. Viremic samples were assessed for HIV-1 drug resistance mutations. There were 16 TBM, 46 probable TBM, 35 non-TBM patients, and six unclassifiable patients. TBM and non-TBM patients did not differ in median plasma viral load but TBM patients had significantly higher median CSF viral load than non-TBM participants (p = 0.0005). No major drug resistance mutations were detected in viremic samples. Interleukin (IL)-1β, IL-17, platelet derived growth factor (PDGF)-BB, granulocyte colony stimulating factor (G-CSF) and cathelicidin were significantly elevated in the CNS of TBM participants compared to other patients although these associations were lost after correction for false discovery. Our data suggest that TB co-infection of the CNS is associated with enhanced localized HIV-1 viral replication but none of the evaluated soluble immunological potential biomarkers could reliably distinguish TBM from other HIV-associated meningitides

    Transmission of 'Candidatus Anaplasma camelii' to mice and rabbits by camel-specific keds, Hippobosca camelina.

    Get PDF
    Anaplasmosis, caused by infection with bacteria of the genus Anaplasma, is an important veterinary and zoonotic disease. Transmission by ticks has been characterized but little is known about non-tick vectors of livestock anaplasmosis. This study investigated the presence of Anaplasma spp. in camels in northern Kenya and whether the hematophagous camel ked, Hippobosca camelina, acts as a vector. Camels (n = 976) and > 10,000 keds were sampled over a three-year study period and the presence of Anaplasma species was determined by PCR-based assays targeting the Anaplasmataceae 16S rRNA gene. Camels were infected by a single species of Anaplasma, 'Candidatus Anaplasma camelii', with infection rates ranging from 63-78% during the dry (September 2017), wet (June-July 2018), and late wet seasons (July-August 2019). 10-29% of camel keds harbored 'Ca. Anaplasma camelii' acquired from infected camels during blood feeding. We determined that Anaplasma-positive camel keds could transmit 'Ca. Anaplasma camelii' to mice and rabbits via blood-feeding. We show competence in pathogen transmission and subsequent infection in mice and rabbits by microscopic observation in blood smears and by PCR. Transmission of 'Ca. Anaplasma camelii' to mice (8-47%) and rabbits (25%) occurred readily after ked bites. Hence, we demonstrate, for the first time, the potential of H. camelina as a vector of anaplasmosis. This key finding provides the rationale for establishing ked control programmes for improvement of livestock and human health

    Plasma CXCL13 but Not B Cell Frequencies in Acute HIV Infection Predicts Emergence of Cross-Neutralizing Antibodies

    Get PDF
    Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase) may contribute to the development of broadly cross-neutralizing antibodies. Here, we used pre-infection and acute-infection peripheral blood mononuclear cells and plasma samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig stages I–V of acute infection to study B cell subsets and B-cell associated cytokines (BAFF and CXCL13) kinetics for up to ~90 days post detection of plasma viremia. Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine levels were measured by ELISA. We observed a rapid but transient increase in exhausted tissue-like memory, activated memory, and plasmablast B cells accompanied by decline in resting memory cells in untreated, but not treated women. B cell subset frequencies in untreated women positively correlated with viral loads but did not predict emergence of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels predicted the later emergence of detectable cross-neutralizing antibodies at 12 months post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. However, plasma CXCL13 levels during hyperacute infection predicted the subsequent emergence of cross-neutralizing antibodies, providing a potential biomarker for the evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection studies to explore mechanisms underlying development of neutralizing antibodies

    Low Immune Activation in Early Pregnancy Is Associated With Preterm But Not Small-for-gestational-age Delivery in Women Infected With Human Immunodeficiency Virus Initiating Antiretroviral Therapy in Pregnancy: A Prematurity Immunology in HIV-infected Mothers and their Infants Study (PIMS) Case-control Study in Cape Town, South Africa.

    Get PDF
    BACKGROUND: Mechanisms underlying an association between human immunodeficiency virus (HIV) or antiretroviral therapy (ART) during pregnancy with risk of preterm delivery (PTD) and small-for-gestational-age (SGA) remain unclear. We explored the association between cellular immune activation and PTD or SGA in women with HIV initiating ART during or before pregnancy. METHODS: Women with HIV enrolled at median 15 weeks' gestation, were analyzed for immune markers, and matched on ART initiation timing (15 women initiated pre- and 15 during pregnancy). There were 30 PTD (delivery 25th percentile) as outcomes. Lymphocytes, monocytes, and dendritic cell populations and their activation status or functionality were enumerated by flow cytometry. RESULTS: PTD cases initiating ART in pregnancy showed decreased CD8+ T cell, monocyte, and dendritic cell activation; increased classical (CD14+CD16-) and intermediate (CD14+CD16+) monocyte frequencies; and decreased inflammatory monocytes (CD14dimCD16+) compared with SGA cases and term controls (all P < .05). Allowing for baseline viral load, the immune markers remained significantly associated with PTD but only in women initiating ART in pregnancy. Lower monocyte activation was predictive of PTD. TLR ligand-induced interferon-α and macrophage inflammatory protein-1β levels in monocytes were significantly lower in PTD women initiating ART in pregnancy. CONCLUSION: Low immune activation, skewing toward anti-inflammatory monocytes, and lower monocyte cytokine production in response to TLR ligand stimulation were associated with PTD but not SGA among women initiating ART in, but not before, pregnancy, suggesting immune anergy to microbial stimulation as a possible underlying mechanism for PTD in women initiating ART in pregnancy

    Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya.

    Get PDF
    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37-4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12-8.56) and 0.27 (95% CI 0.14-0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study
    corecore