13 research outputs found

    Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination

    Get PDF
    OBJECTIVES: Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN: Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS: Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS: All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS: These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies

    Augmentation of HIV-specific T cell function by immediate treatment of hyperacute HIV-1 infection

    Get PDF
    Sustained viremia after acute HIV infection is associated with profound CD4+ T cell loss and exhaustion of HIV-specific CD8+ T cell responses. To determine the impact of combination antiretroviral therapy (cART) on these processes, we examined the evolution of immune responses in acutely infected individuals initiating treatment before peak viremia. Immediate treatment of Fiebig stages I and II infection led to a rapid decline in viral load and diminished magnitude of HIV-specific (tetramer+) CD8+ T cell responses compared to untreated donors. There was a strong positive correlation between cumulative viral antigen exposure before full cART-induced suppression and immune responses measured by MHC class I tetramers, IFN-γ ELISPOT, and CD8+ T cell activation. HIV-specific CD8+ T responses of early treated individuals were characterized by increased CD127 and BCL-2 expression, greater in vitro IFN-γ secretion, and enhanced differentiation into effector memory (Tem) cells. Transcriptional analysis of tetramer+ CD8+ T cells from treated persons revealed reduced expression of genes associated with activation and apoptosis, with concurrent up-regulation of prosurvival genes including BCL-2, AXL, and SRC. Early treatment also resulted in robust HIV-specific CD4+ T cell responses compared to untreated HIV-infected individuals. Our data show that limiting acute viremia results in enhanced functionality of HIV-specific CD4+ and CD8+ T cells, preserving key antiviral properties of these cells

    Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection

    Get PDF
    Introduction: Immunological damage in acute HIV infection (AHI) may predispose to detrimental clinical sequela. However, studies on the earliest HIV-induced immunological changes are limited, particularly in sub-Saharan Africa. We assessed the plasma cytokines kinetics, and their associations with virological and immunological parameters, in a well-characterized AHI cohort where participants were diagnosed before peak viremia. Methods: Blood cytokine levels were measured using Luminex and ELISA assays pre-infection, during the hyperacute infection phase (before or at peak viremia, 1–11 days after the first detection of viremia), after peak viremia (24–32 days), and during the early chronic phase (77–263 days). Gag-protease-driven replicative capacities of the transmitted/founder viruses were determined using a green fluorescent reporter T cell assay. Complete blood counts were determined before and immediately following AHI detection before ART initiation. Results: Untreated AHI was associated with a cytokine storm of 12 out of the 33 cytokines analyzed. Initiation of ART during Fiebig stages I–II abrogated the cytokine storm. In untreated AHI, virus replicative capacity correlated positively with IP-10 (rho = 0.84, P < 0.001) and IFN-alpha (rho = 0.59, P = 0.045) and inversely with nadir CD4+ T cell counts (rho = − 0.58, P = 0.048). Hyperacute HIV infection before the initiation of ART was associated with a transient increase in monocytes (P < 0.001), decreased lymphocytes (P = 0.011) and eosinophils (P = 0.003) at Fiebig stages I–II, and decreased eosinophils (P < 0.001) and basophils (P = 0.007) at Fiebig stages III–V. Levels of CXCL13 during the untreated hyperacute phase correlated inversely with blood eosinophils (rho = − 0.89, P < 0.001), basophils (rho = − 0.87, P = 0.001) and lymphocytes (rho = − 0.81, P = 0.005), suggesting their trafficking into tissues. In early treated individuals, time to viral load suppression correlated positively with plasma CXCL13 at the early chronic phase (rho = 0.83, P = 0.042). Conclusion: While commencement of ART during Fiebig stages I–II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophils, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV-induced immune changes

    Contrasting Inflammatory Signatures in Peripheral Blood and Bronchoalveolar Cells Reveal Compartment-Specific Effects of HIV Infection

    Get PDF
    The mechanisms by which HIV increases susceptibility to tuberculosis and other respiratory infections are incompletely understood. We used transcriptomics of paired whole bronchoalveolar lavage cells (BLCs) and peripheral blood mononuclear cells to compare the effect of HIV at the lung mucosal surface and in peripheral blood. The majority of HIV-induced differentially expressed genes (DEGs) were specific to either the peripheral or lung mucosa compartments (1,307/1,404, 93%). Type I interferon signaling was the dominant signature of DEGs in HIV-positive blood but not in HIV-positive BLCs. DEGs in the HIV-positive BLCs were significantly enriched for infiltration with cytotoxic CD8+ T cells. Higher expression of type 1 interferon transcripts in peripheral CD8+ T cells and representative transcripts and proteins in BLCs-derived CD8+ T cells during HIV infection, including IFNG (IFN-gamma), GZMB (Granzyme B), and PDCD1 (PD-1), was confirmed by cell-subset specific transcriptional analysis and flow cytometry. Thus, we report that a whole transcriptomic approach revealed qualitatively distinct effects of HIV in blood and bronchoalveolar compartments. Further work exploring the impact of distinct type I interferon programs and functional features of CD8+ T cells infiltrating the lung mucosa during HIV infection may provide novel insights into HIV-induced susceptibility to respiratory pathogens

    Macrosegregation simulation model based on Lattice-Boltzmann method with high computational efficiency

    Get PDF
    A macrosegregation simulation model is developed by coupling solute and energy conservation equations with Lattice-Boltzmann Method (LBM), newly developing technique of computational fluid dynamics. Effect of the solidification shrinkage is taken into account in the present LBM as well as effects of the Darcy's flow and thermos-solutal convection. The present LBM-coupled model is based on modified lattice Bhadnager-Gross-Krook method, the numerical stability of which is better than that of the standard LBM. Accordingly, the present LBM-coupled model can be applied to simulations of macrosegregation behaviors in metallic alloy systems that cannot be handled by the previous LBM-coupled model. The validity of the model was demonstrated by comparing the results for steady-state flows with those of analytical solutions and a conventional model based on the Navier-Stokes equation. In addition, the computational speed of the present model is compared with the one of conventional model in cases of lateral directional solidification of Sn-Bi alloy and continuous casting of a steel slab. It is shown that the present LBM-coupled model enables remarkably faster computation than the conventional model especially in the latter case. (C) 2018 Elsevier Ltd. All rights reserved

    Proportions of circulating follicular helper T cells are reduced and correlate with memory B cells in HIV-infected children

    No full text
    Introduction: HIV causes defects in memory B cells in children, but the mechanisms of those defects have not been fully elucidated. One possible mechanism is the lack of T-cell help to B cells during immune reactions. However, few studies have assessed the effect of HIV on follicular helper T cells (TFH cells) in children. Methods: In this study, follicular-homing CD4 T cells and memory B cells were assessed in HIV-infected children and compared with children from the community. CXCR5 and CD45RO were used as markers of follicular-homing T cells and memory T cells, respectively. Memory TFH cells were identified as CD3+CD8-CD4+CXCR5+CD45RO+PD1+. Central memory T cells were identified based on CCR7 expression. Relationship between the proportions of follicular-homing CD4 T cells and memory B cells were determined in multivariable regression models. Results: Highly viremic HIV-infected children had lower proportions of memory TFH cells when compared with community control children. In multivariable analyses, high proportions of memory TFH cells were associated with increased percentages of resting memory B cells after adjusting for other covariates. Conclusion: The impact of HIV on follicular helper T cells could influence the accumulation of memory B cells in HIV-infected children.</p

    Control of viremia enables acquisition of resting memory B cells with age and normalization of activated B cell phenotypes in HIV-infected children

    No full text
    HIV affects the function of all lymphocyte populations, including B cells. Phenotypic and functional defects of B cells in HIV-infected adults have been well characterized, but defects in children have not been studied to the same extent. We determined the proportion of B cell subsets and frequencies of Ag-specific memory B cells in peripheral blood from HIV-infected children and healthy controls, using flow cytometry and B cell ELISPOT, respectively. In addition, we measured the quantities and avidities of plasma Abs against various Ags by ELISA. We also determined plasma levels of BAFF and expression of BAFF receptors on B cells. Children with high HIV viremia had increased proportions of activated mature B cells, tissue-like memory B cells and plasmablasts, and low proportions of naive B cells when compared with community controls and children with low HIV viremia, similar to adults infected with HIV. HIV-infected groups had lower proportions of resting memory B cells than did community controls. Notably, high HIV viremia prevented the age-dependent accumulation of class-switched resting memory B cells. HIV-infected children, regardless of the level of viremia, showed lower quantities and avidities of IgG and lower frequencies of memory B cells against Expanded Program on Immunization vaccines. The HIV-infected children had an altered BAFF profile that could have affected their B cell compartment. Therefore, B cell defects in HIV-infected children are similar to those seen in HIV-infected adults. However, control of HIV viremia is associated with normalization of activated B cell subsets and allows age-dependent accumulation of resting memory B cells

    Outcomes of prevention of mother to child transmission of the human immunodeficiency virus-1 in rural Kenya - A cohort study Infectious Disease epidemiology

    No full text
    Background Success in prevention of mother-to-child transmission (PMTCT) raises the prospect of eliminating pediatric HIV infection. To achieve global elimination, however, strategies are needed to strengthen PMTCT interventions. This study aimed to determine PMTCT outcomes and identify challenges facing its successful implementation in a rural setting in Kenya. Methods A retrospective cohort design was used. Routine demographic and clinical data for infants and mothers enrolling for PMTCT care at a rural hospital in Kenya were analysed. Cox and logistic regression were used to determine factors associated with retention and vertical transmission respectively. Results Between 2006 and 2012, 1338 infants were enrolled and followed up for PMTCT care with earlier age of enrollment and improved retention observed over time. Mother to child transmission of HIV declined from 19.4 % in 2006 to 8.9 % in 2012 (non-parametric test for trend p = 0.024). From 2009 to 2012, enrolling for care after 6 months of age, adjusted Odds Ratio [aOR]: 23.3 [95 % confidence interval (CI): 8.3–65.4], presence of malnutrition ([aOR]: 2.3 [95 % CI: 1.1–5.2]) and lack of maternal use of highly active antiretroviral therapy (HAART) (aOR: 6.5 [95 % CI: 1.4–29.4]) was associated with increased risk of HIV infection. Infant’s older age at enrollment, malnutrition and maternal HAART status, were also associated with drop out from care. Infants who were not actively followed up were more likely to drop out from care (adjusted Hazard Ratio: 6.6 [95 % CI: 2.9–14.6]). Discussion We report a temporal increase in the proportion of infants enrolling for PMTCT care before 3 months of age, improved retention in PMTCT and a significant reduction in the proportion of infants enrolled who became HIV-infected, emphasizing the benefits of PMTCT. Conclusion A simple set of risk factors at enrollment can identify mother-infant pairs most at risk of infection or drop out for targeted intervention

    HIV-exposed uninfected infants show robust memory B cell responses in spite of a delayed accumulation of memory B cells: an observational study in the first two years of life

    Get PDF
    Background Improved HIV care has led to an increase in the number of HIV-exposed uninfected (HEU) infants born to HIV infected women. Although uninfected, these infants experience increased morbidity and mortality. One explanation may be that their developing immune system is altered by HIV-exposure predisposing them to increased post-natal infections. Methods We explored the impact of HIV-exposure on the B-cell compartment by determining the B-cell subset distribution, the frequency of common vaccine antigen-specific memory B cells (MBCs) and their respective antibody levels in HEU and HIV-unexposed uninfected (HUU) infants born to uninfected mothers, using flow cytometry, B-cell ELISPOT and ELISA, respectively, during the first two years of life. Results For the majority of the B-cell subsets there were no differences between HEU and HUU infants. However, HIV exposure was associated with a lower proportion of B cells in general and specifically MBCs, largely due to a lower proportion of unswitched memory B cells. This reduction was maintained even after correcting for age. These phenotypic differences in the MBC compartment did not affect the ability of HEU infants to generate recall responses to previously encountered antigens, or reduce the antigen-specific antibody levels at 18 months of life. Conclusions Although HIV-exposure was associated with a transient reduction in the proportion of MBCs, we found that the ability of HEUs to mount robust MBC and serological responses was unaffected
    corecore