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Improved HIV care has led to an increase in the number of HIV-exposed uninfected (HEU) infants born to HIV-infected women.
Although they are uninfected, these infants experience increased morbidity and mortality. One explanation may be that their
developing immune system is altered by HIV exposure, predisposing them to increased postnatal infections. We explored the
impact of HIV exposure on the B-cell compartment by determining the B-cell subset distribution, the frequency of common vac-
cine antigen-specific memory B cells (MBCs), and the levels of antibodies to the respective antigens in HEU and HIV-unexposed
uninfected (HUU) infants born to uninfected mothers, using flow cytometry, a B-cell enzyme-linked immunosorbent spot assay,
and an enzyme-linked immunosorbent assay, respectively, during the first 2 years of life. For the majority of the B-cell subsets,
there were no differences between HEU and HUU infants. However, HIV exposure was associated with a lower proportion of B
cells in general and MBCs in particular, largely due to a lower proportion of unswitched memory B cells. This reduction was
maintained even after correcting for age. These phenotypic differences in the MBC compartment did not affect the ability of
HEU infants to generate recall responses to previously encountered antigens or reduce the antigen-specific antibody levels at 18
months of life. Although HIV exposure was associated with a transient reduction in the proportion of MBCs, we found that the
ability of HEU infants to mount robust MBC and serological responses was unaffected.

The use of highly active antiretroviral therapy (HAART), im-
proved obstetric management, and formula feeding have re-

duced vertical HIV infection to almost zero in the developed
countries (1), with some progress being made in resource-poor
countries (2). Consequently, the number of HIV-exposed unin-
fected (HEU) infants born to HIV-infected women has and will
continue to increase, particularly in regions where HIV infection
in women of childbearing age is still prevalent (3).

Increased rates of morbidity and mortality are reported in
HEU infants (4–8). While these may be partly explained by in-
creased exposure to environmental antigens and poor maternal
health, it is possible that in utero exposure to HIV antigens, anti-
retroviral drugs, and an altered placental cytokine environment
may affect the developing immune system, predisposing HEU in-
fants to increased postnatal infections.

The impact of maternal chronic infection on fetal immuno-
modulation and, specifically, of HIV exposure has previously been
reviewed (9–11). For HIV, exposure in infants has been associated
with an activated intrauterine immune environment (12, 13) and
reduced T-cell counts and polyfunctionality (14–17). While the
available evidence has largely focused on the potential disruptions
to the T-cell compartment in HEU infants, much less is known
about the impact of HIV exposure on the B-cell compartment,
with a majority of the studies concentrating on serological param-
eters (10). Previous observations of the profound effect of HIV
infection on B cells and their function (18, 19) may extend, albeit
subtly, to HIV exposure in the absence of infection. Elevated levels
of total immunoglobulin in HEU infants compared to those in
HIV-unexposed uninfected (HUU) infants born to HIV-unin-
fected mothers have been reported to persist for more than 2 years

(20). When specific antibody responses against childhood immu-
nizations were measured, HEU infants responded with antibody
levels similar to those in HUU infants (21–23). However, other
studies have reported a larger proportion of nonresponders to
hepatitis B vaccine (24), diminished neutralizing antibodies to
poliovirus vaccine (25), lower antibody avidity (23), and reduced
opsonization for some of the pneumococcal polysaccharides of
conjugate vaccine (26) among HEU infants. Of the few studies
that have investigated the impact of HIV exposure on B cells, one
reported increased B-cell apoptosis in HEU infants (27), whereas
others observed a higher percentage of CD19� cells (16, 28). Re-
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cently, similar proportions of B-cell subsets were reported in HEU
infants and HUU infants at age 6, 12, and 18 months (29).

Previous studies have, however, not associated observed phe-
notypes with B-cell function. In the current study, we sought to
investigate the impact of maternal HIV infection on the infant’s
developing B-cell compartment during the first 2 years of life by
determining the phenotypic composition of the B-cell compart-
ment and associating this with the induction and maintenance of
antigen-specific memory B cells and antibodies in response to
common childhood vaccines in HEU and HUU infants.

MATERIALS AND METHODS
Study population and recruitment. The study was conducted at the
Comprehensive Care and Research Clinic (CCRC), Kilifi County Hospital
(KCH), prior to the 2012 national integration of prevention of mother-
to-child transmission of HIV (PMTCT) services with mother-to-child
health (MCH) services. PMTCT care and testing were provided per Ken-
yan guidelines (30) and as previously reported (31). In summary, the
guidelines recommended that all pregnant women be tested for HIV dur-
ing their first antenatal clinic visit and that a repeat test be offered to
initially HIV-negative women during the third trimester. Mothers were
placed on lifelong highly active antiretroviral therapy (HAART) if their
CD4 count was less than 350 cells/mm3, but if it was higher, they were
placed on prophylactic antiretroviral therapy with azidothymidine (AZT)
from 14 weeks of pregnancy (or at first contact with antenatal services, if
later) and AZT prophylaxis was continued through labor and 1 week after
delivery. HIV-exposed infants born to mothers not on HAART were pre-
scribed nevirapine prophylaxis at birth, and this treatment was continued
until 1 week after the complete cessation of breastfeeding, while for those
with mothers on HAART, nevirapine prophylaxis was stopped at 6 weeks
of life. Infants aged less than 18 months were tested for HIV by PCR at 6
weeks after birth or at the earliest opportunity; subsequently, an antibody
test was performed at age 9 months (if the infant had previously been PCR
negative) and 18 months. Infants with confirmed HIV infection at any of
these test points were immediately put on HAART. All HIV-exposed in-
fants were given prophylactic co-trimoxazole during the first 18 months
of life, and those testing HIV positive at any of the testing time points
continued on co-trimoxazole lifelong. HAART and co-trimoxazole were
supplied at monthly visits. The infants also received their scheduled early
childhood immunizations during these visits, and their immunization
cards were inspected. Pairs of HIV-infected mothers and their infants
(between 3 and 18 months of age) were recruited. Infants suffering from
any acute infection or malnutrition at the time of recruitment were ex-
cluded from the study. Mothers contributed a single blood sample at
recruitment, while the infants were followed up longitudinally every 3
months until they were 24 months of age, with an upper limit of up to 30
months being used to cover late follow-up visits. Community controls
were recruited within the same locality from cohorts under active malaria
surveillance, which includes an annual cross-sectional bleed (32), and
from one of the sentinel dispensaries. To minimize the potential impact of
malaria exposure on the B-cell compartment (33, 34), only infants who
had no reported episode of malaria following weekly home visits and were
negative for Plasmodium falciparum (determined by a rapid diagnostic
test) during the annual cross-sectional bleed were selected. It was not
possible to follow the community controls longitudinally, and therefore,
infants whose ages were similar to those of the HEU infants at the three
monthly follow-up time points were recruited. The prevalence of HIV
infection in adults from the study area has been estimated to be 4.1% (35).

Ethical considerations. Informed consent was obtained from the in-
fants’ mothers, and ethical approval was granted by the National Ethics
and Review Committee, Kenya Medical Research Institute, reference
2085.

Sample collection. At each study-related visit, a 5-ml venous blood
sample was drawn and 2 ml was used for immediate analysis of hemato-
logical parameters and B-cell subsets. Peripheral blood mononuclear cells

(PBMCs) and plasma were separated from the remaining 3 ml and stored
in liquid nitrogen and at �80°C, respectively, until use. The single sample
obtained from the mothers at their recruitment was used to determine the
maternal viral load and CD4 counts at recruitment.

Multiparametric flow cytometry. B-cell subsets were described using
the following monoclonal antibodies: fluorescein isothiocyanate (FITC)-
IgM, electron-coupled dye (ECD)–CD19, and phycoerythrin-Cy5 (PC5)–
CD27 (Beckman Coulter); phycoerythrin (PE)-CD21 and PE-Cy7-CD38
(eBioscience); and PE-CD10 and allophycocyanin-CD21 (BD Pharmin-
gen). Fifty microliters of whole blood was washed and incubated with
cocktails of the antibodies listed above, and the erythrocytes were lysed. At
least 80,000 lymphocytes were acquired on a CyAn ADP analyzer (Beck-
man Coulter), and data were analyzed using FlowJo software, version
9.4.2 (TreeStar Inc., FlowJo Africa). The gating strategy used to identify
different B-cell subsets is described in Fig. S1 in the supplemental mate-
rial. B-cell subsets were then represented as a proportion of the total B-cell
percentage in lymphocytes. Absolute B-cell subset counts were deter-
mined on the basis of the subset proportion in the total number of B cells.
The total number of B cells was determined as a proportion of the absolute
lymphocyte counts determined from a whole-blood cell count assay.

ELISpot assay. Antigen-specific IgG memory B cells (MBCs) against
tetanus toxoid (TT; Statens Serum Institut), measles virus antigen (Me-
ridian Life Science), diphtheria toxoid (DT; Alpha Diagnostics Interna-
tional), and pneumococcal capsular polysaccharides (PCPs) comprising a
pool of 6 common serotypes within the study region (serotypes 19F, 5, 1,
23F, 14, and 6B; ATCC) (36) were quantified using a modification of a
previously reported enzyme-linked immunosorbent spot (ELISpot) assay
(37, 38). Briefly, 2 � 105 PBMCs per well were stimulated for 5 days with
2.5 �g/ml CpG oligodeoxynucleotide-2006 (Hycult Biotech), 1:5,000
Staphylococcus aureus Cowan strain protein A (Sigma), and 83 ng/ml
pokeweed mitogen (Sigma) in flat-bottomed 96-well culture plates. Multi-
Screen plates (Millipore) were precoated with either 5 �g/ml TT, 5 �g/ml
measles virus antigen, 5 �g/ml DT, a pool of 6 PCPs each at a concentra-
tion of 10 �g/ml, 10 �g/ml polyclonal sheep anti-human IgG (Binding
Site), or 1% bovine serum albumin (BSA). Cultured PBMCs were seeded
onto antigen-coated plates either at 2 � 105 cells/well (antigen-specific
responses) or at 2 � 102 or 2 � 103 cells/well (total IgG responses) and
incubated overnight. Alkaline phosphatase-conjugated donkey anti-hu-
man IgG antibody (Jackson ImmunoResearch Laboratories) was used as
the secondary antibody. Spots were developed using 5-bromo-4-chloro-
3-indolylphosphate–nitroblue tetrazolium (Bio-Rad) and counted using
a CTL Immunospot analyzer (Cellular Technologies). The background
was accounted for by subtracting the average number of spots in wells
coated with 1% BSA from the number of spots in antigen-coated wells. An
upper limit of three spots was detected at any time in the wells coated with
1% BSA.

ELISA. Human IgG antibodies specific to TT, DT, and a pool of 6
PCPs, described above, were quantified using a modified enzyme-linked
immunosorbent assay (ELISA) protocol previously reported (39). Anti-
body levels were measured after the infant’s 18th month of life to avoid
maternally transferred antibody bias. In brief, ELISA plates were coated
overnight with either TT (1 �g/ml), DT (5 �g/ml), anti-human IgG (10
ng/ml), or a pool of 6 PCPs (each at 10 �g/ml). Plasma samples were
diluted at 1:1,000. Peroxidase-conjugated donkey anti-human IgG (Jack-
son ImmunoResearch) was used as the secondary antibody before devel-
opment of the plates with o-phenylenediamine dihydrochloride (Sigma).
The results are represented as arbitrary antibody units generated from a
standard curve on the basis of the results for a control sample that was
reactive to the antigen of interest. The control sample was obtained from
an adult with a known vaccination history and status of reactivity to the
antigen of interest.

In addition, the quantities of IgG antibodies against Haemophilus in-
fluenzae type b (Hib; Binding Site), measles virus antigen IgG ELISA (cat-
alog number ESR102G; Serion), and respiratory syncytial virus (RSV) IgG
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(catalog number ESR113G; Serion) were determined by following the
manufacturer’s instructions.

Maternal viral load determination. Maternal viral loads were deter-
mined at the point of infant recruitment at the International Centre for
Reproductive Health, Mombasa, Kenya, using a reverse transcription-
quantitative PCR test developed by the Agence Nationale de Recherches
sur le SIDA (ANRS). The assay targets a conserved long terminal repeat
region and has a detection limit of 300 RNA copies/ml (40).

Sources of data and analysis. Stata software, version 13.1 (Stata Cor-
poration), was used for the statistical analysis. To determine the impact of
HIV exposure on infant immunological outcomes, linear regression mod-
els adjusted for clustering within a child were used. These models ac-
counted for inherent correlations between repeated measurements done
on the same subject, in addition to accounting for changes with age. To
avoid maternal antibody interference, levels of antibodies against the an-
tigens in common Expanded Programme on Immunization vaccines were
determined after 18 months only. Since this aspect of the study was cross-
sectional, antibody levels were compared between HEU and HUU infants
using the Wilcoxon rank sum test. Mothers’ clinical data, including age,
body mass index (BMI; with a BMI of �18.5 being considered malnutri-
tion), CD4 T-cell count, and HAART use, were routinely captured at the
clinic. Maternal data available in the mother’s records at a time point
closest to that after the infant’s date of birth were included in a linear
regression model to determine the impact of maternal health close to the
time of the infant’s birth on the infant’s developing immune system. Only
data collected within the first 4 months after the infant’s birth were con-
sidered. In addition, the mother’s CD4 count, BMI, and viral load were
collected during the infant’s recruitment and were included in the linear
regression model to determine the impact of the mother’s health during
this period on the infant’s developing immunity.

RESULTS
Baseline characteristics of study population. Between Novem-
ber 2011 and December 2012, infants born to HIV-infected moth-
ers were enrolled at the CCRC, Kilifi County Hospital. Of the 92
infants recruited, 5 (5.4%) tested positive for HIV. Two tested
positive at 6 weeks of age, while the remaining 3 were found to be

positive at the first clinic visit, which was made more than 2
months after birth (see Fig. S2 in the supplemental material). The
HIV-infected infants were excluded from the study, and the sub-
sequent analysis concentrated on HIV-exposed uninfected in-
fants. Forty-three out of 87 of the HEU infants (49.4%) were boys.
Ninety-eight community controls under 30 months of age were
recruited for comparison. Nine of them were sampled twice, hav-
ing participated in two annual cross-sectional bleeds. Data for the
HEU infants’ mothers recorded closest to the time after the in-
fants’ date of birth and collected during recruitment were avail-
able (Table 1). The majority of the mothers had a BMI of �18.5
(and, hence, were considered well nourished) both at the time
closest to the time after the infant’s date of birth and at recruit-
ment. They also had CD4 counts above 400 cells/mm3 at both time
points. We were able to obtain viral load data for 78 of the moth-
ers. Of these, 38/78 (48.7%) had viral loads less than 300 copies per
ml and 25/78 (32.1%) had viral loads above 5,000 copies per ml.
Mothers who had been on HAART for more than 2 years prior to
the infant’s birth had a lower median viral load at recruitment
than those who had not been on HAART (Table 1).

HIV exposure is associated with a reduced proportion of un-
switched MBCs. The first 70 HEU infants to be recruited were
included in the B-cell phenotypic analysis. These infants were not
different from the remaining 17 who were recruited later and not
included in the B-cell phenotypic analysis. We analyzed the B-cell
subsets in 140 peripheral blood samples from these 70 infants (34
HEU infants contributed one sample, and 36 contributed multiple
samples) and 98 HUU infants (9 infants were bled at two annual
cross-sectional bleeds and therefore contributed two samples
each) (see Table S1 in the supplemental material) to determine
whether HIV exposure is associated with an altered B-cell subset
distribution. In the univariate regression analysis, HIV exposure
was associated with a significant reduction in the total B-cell pro-
portion, largely due to changes in the memory B cell (MBC) com-

TABLE 1 Data for mothers of HIV-exposed uninfected infants taken at the time closest to the time after the infant’s date of birth and during the
infant’s recruitmenta

Characteristic

Result for mothers:

Close to time of infant’s birth During infant’s recruitment

Median (IQR) age (yr) (n � 87) 29.2 (25.4–34.2) 30.1 (26.1–35.1)
Median (IQR) BMIb 21.5 (19.5–23.3) 21.2 (19.5–23.0)
Median (IQR) CD4 count (no. of cells/mm3)c 410 (292–640) 457 (322–603)

% of mothers with the following viral load (no. of copies/ml)d:
�300 ND 48.7 (38/78)
�300–�1,000 ND 7.7 (6/78)
�1,000–�5,000 ND 11.5 (9/78)
�5,000 ND 32.1 (25/78)

Median (IQR) viral load (no. of copies/ml) categorized by
HAART use close to time of infant’s birth

Not on HAART (n � 37) ND 2,783 (54–20,685)
HAART for 0–24 mo (n � 13) ND 29 (0–2,648)
HAART for �24 mo (n � 20) ND 10 (0–402)
Missing HAART category (n � 8)e ND 2,428 (18–25,894)

a HAART, highly active antiretroviral therapy; IQR, interquartile range; ND, not determined.
b Data are for 72 mothers at the time close to the time of the infant’s birth and 74 mothers during the infant’s recruitment.
c Data are for 53 mothers at the time close to the time of the infant’s birth and 75 mothers during the infant’s recruitment.
d Viral load data were available for 78 of the mothers. Data in parentheses represent the number of mothers with the indicated viral load/total number of mothers tested.
e Mothers for whom data on the duration on HAART close to the time of the infant’s birth were missing.
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partment (Table 2). A reduction in resting memory B cells
(CD19� CD10� CD27� CD21�) was associated with HIV expo-
sure. This association was not observed when the whole memory B
cell population (CD19� CD10� CD27�) was considered. It was
largely due to changes in the unswitched MBC subset (CD19�

CD10� CD27� IgM positive [IgM�]), while the proportions of
switched MBCs (CD19� CD10� CD27� IgM negative [IgM�])
were similar in HEU and HUU infants. The association of HIV
exposure with a lower proportion of unswitched MBCs was main-
tained even after adjusting for multiple testing using the Bonfer-
roni correction and correcting for age. Similarly, when absolute
B-cell subset counts were considered, HIV exposure was signifi-
cantly associated with a reduction of unswitched absolute MBC
counts (Table 2).

Although memory B cells gradually accumulated with age in
HEU infants, as observed from individual infants’ kinetics for
those who had data from more than one time point (see Fig. S4 in
the supplemental material), when all infants were considered (Fig.
1), HIV exposure resulted in a slower development of the memory
B-cell compartment (Fig. 1). In line with the overall reduction in
unswitched memory B cells, this was true for the unswitched MBC
subset, while the gradual accumulation in the switched MBC com-

partment observed in HEU infants remained comparable to that
observed in HUU infants during these first 2 years of life.

We further determined whether a mother’s data recorded clos-
est to the time after her infant’s date of birth and/or at recruitment
had an impact on the B-cell subset distribution observed in the
HEU infants. There was no association between the majority of
the maternal parameters and the infant’s B-cell subset distribu-
tion, apart from the total B-cell percentage, which directly corre-
lated with maternal CD4 counts but inversely with the maternal
BMI closest to the time after the infant’s date of birth and the BMI
at infant recruitment. Interestingly, the maternal viral load, al-
though measured only at the infant’s recruitment, was signifi-
cantly associated with higher proportions of infant plasmablasts
and MBC subsets but a lower proportion of naive B cells (see Table
S2 in the supplemental material), suggesting a higher level of im-
mune activation in infants of mothers with ongoing viral replica-
tion.

Recall responses to selected vaccine antigens are comparable
between HEU and HUU infants. We measured recall responses to
representative antigens (measles virus antigen, PCPs, DT, TT, and
total IgG) by ELISpot assay in 64 HEU infants (22 infants contrib-
uted a single sample, and 18 infants contributed more than one

TABLE 2 Association of HIV exposure and changes in infants’ B-cell subset percentages and absolute counts during first 2 years of lifea

B-cell subset
Effect
parameter

B-cell subset % B-cell subset absolute no.

Univariate linear regression
Multivariate linear
regression Univariate linear regression

Multivariate linear
regression

	 coefficient (SE) P value 	 coefficient (SE) P value 	 coefficient (SE) P value 	 coefficient (SE) P value

B cells HIV exposure �0.139 (0.054) 0.012 �0.138 (0.055) 0.013 �0.063 (0.089) 0.482
Age �0.004 (0.004) 0.35 �0.004 (0.004) 0.378 �0.0126 (0.0067) 0.061

Naive B-cells HIV exposure �0.005 (0.017) 0.760 �0.019 (0.098) 0.850
Age �0.008 (0.001) <0.001 �0.020 (0.007) 0.004

Total MBCs HIV exposure �0.152 (0.110) 0.168 �0.054 (0.122) 0.657
Age 0.800 (0.062) <0.001 �1.430 (0.131) 0.000

Resting MBCs HIV exposure �0.211 (0.086) 0.015 �0.259 (0.065) <0.001 �0.191 (0.124) 0.124
Age 1.531 (0.093) <0.001 0.812 (0.045) <0.001 �1.351 (0.161) <0.001

Unswitched
MBCs

HIV exposure �0.337 (0.095) <0.001 �0.359 (0.081) <0.001 �0.287 (0.138) 0.039 �0.364 (0.128) 0.005

Age 0.620 (0.061) <0.001 0.629 (0.057) <0.001 �0.466 (0.067) <0.001 �0.493 (0.061) <0.001

Switched MBCs HIV exposure 0.131 (0.089) 0.140 0.201 (0.126) 0.111
Age 0.752 (0.046) <0.001 �1.34 (0.173) <0.001

Atypical MBCs HIV exposure 0.133 (0.081) 0.100 0.130 (0.116) 0.266
Age 0.009 (0.005) 0.103 �0.038 (0.019) 0.052

Activated B cells HIV exposure �0.022 (0.077) 0.780 �0.050 (0.106) 0.634
Age �0.954 (0.114) <0.001 �0.374 (0.064) <0.001

Plasmablasts HIV exposure 0.040 (0.144) 0.782 0.0370 (0.164) 0.823
Age 0.037 (0.009) <0.000 �0.335 (0.103) 0.001

a Linear regression models were used to describe the estimated change in an infant’s B-cell subset percentages and counts (	 coefficients with standard errors). The impact of HIV
exposure on B cells was determined at a significance level of a P value of �0.05. Subset analysis on naive B cells, total memory B cells, and plasmablasts was performed after
adjusting for multiple testing using the Bonferroni correction at a significance level of a P value of �0.02, and further subgroup analysis within the memory B cells (resting, atypical,
activated, switched, and unswitched memory B cells) was performed at a significance level of a P value of �0.005. Statistically significant values are shown in boldface type. The
linear regression models were adjusted for clustering within an infant and, hence, accounted for inherent correlations between repeated measurements done on the same subject.
MBC, memory B cell.
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sample) and 29 HUU infants (the samples used are described in
Table S1 in the supplemental material). The samples selected for
these analyses were limited by the availability of adequate cell
numbers in samples from HUU infants. In linear univariate anal-
ysis, HIV exposure was associated with a reduction in total IgG�

MBC recall responses (Table 3). This association was maintained
even after adjusting for age. However, HIV exposure did not per-
turb the generation of antigen-specific IgG MBC recall responses
against measles virus antigen, PCPs, DT, and TT, which were sim-
ilar in HEU and HUU infants. The mothers’ data recorded closest
to the time after the infants’ dates of birth and at recruitment were
not associated with an infant’s ability to generate recall responses
to previously encountered antigens (see Table S2 in the supple-
mental material).

Levels of IgG antibodies to selected vaccine antigens at 18
months of life. Next, we assessed whether the plasma concentra-
tions of antibodies to vaccine antigens and the agents of common
childhood infections were comparable between HEU and HUU
infants. The maintenance of levels of antibodies to selected vac-
cine antigens was determined after 18 months of life in 55 and 48
plasma samples from HEU and HUU infants, respectively. The

samples used are described in Table S1 in the supplemental mate-
rial. A wide variation in total IgG antibody levels was observed in
the HEU group compared to the variation observed in the HUU
group (Fig. 2a). Out of four antigens (TT, DT, Hib, and PCPs)
against which vaccination is given in the first 16 weeks of life,
anti-PCP IgG levels were significantly higher in the HEU infants
than the HUU infants (Mann-Whitney U test P value � 0.038)
(Fig. 2b to e). The levels of antibodies against measles virus anti-
gen, against which infants are vaccinated in the 9th month of life,
were lower in the HEU infants than the HUU infants (Mann-
Whitney U test P value � 0.0024) (Fig. 2f). Nevertheless, the ma-
jority of infants in both groups attained the conventionally ac-
cepted protective antibody level of 200 mIU/ml (41). No
differences in the levels of IgG antibodies against RSV, to which
infants are naturally exposed, were observed (Fig. 2g). Of concern,
approximately 50% of both HEU and HUU infants’ anti-Hib an-
tibody levels were below a threshold required for long-term pro-
tection by 18 months of life (42) (Fig. 2d). For the two antigens
against which antibody levels were observed to be significantly
different between HEU and HUU infants, measles virus antigen
and PCPs, a subanalysis of antibody levels at 18 months of age and

FIG 1 Distribution of memory B cells (CD19� CD10� CD27�) (a), unswitched memory B cells (CD19� CD10� CD27� IgM�) (b), and switched memory B
cells (CD19� CD10� CD27� IgM�) (c) in HUU infants (red dots) and HEU infants (black dots). Straight lines show the best-fit prediction of the increment in
subset proportions over the 2 years of life. The percentage of memory B cell subsets is presented on the y axis as the natural log of the MBC percentages.

TABLE 3 Impact of HIV exposure on infants’ memory B-cell recall responses during the first 2 years of life to antigens that they had previously been
vaccinated againsta

Antigen Effect parameter

Univariate analysis Multivariate analysis

	 coefficient (SE) P value 	 coefficient (SE) P value

PCPs HIV exposure 0.713 (0.685) 0.302
Age 0.0813 (0.068) 0.235

Measles virus HIV exposure 0.309 (1.033) 0.766
Age 0.024 (0.197) 0.904

TT HIV exposure �0.195 (1.049) 0.853
Age 0.059 (0.074) 0.431

DT HIV exposure 0.708 (0.727) 0.334
Age �0.022 (0.056) 0.700

Total IgG HIV exposure �44.44 (20.88) 0.037 �48.145 (19.14) 0.014
Age 7.268 (1.212) 0.000 7.418 (1.266) 0.000

a Linear regression models were used to describe the estimated change in an infant’s B-cell recall responses to antigens that they had been previously vaccinated against
(	 coefficients with standard errors). P values less than 0.05 were considered significant and are indicated in bold. B-cell recall responses whose changes were significantly associated
with HIV exposure were included in a multivariate regression model accounting for age. The linear regression models adjusted for clustering within an infant and, hence, accounted
for inherent correlations between repeated measurements done on the same subject.
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after 18 months of age (21 and 24 months) was done. Antibodies
against PCPs showed an age-related increase, with the levels being
significantly higher in HEU infants at a time when they were no
longer receiving co-trimoxazole prophylaxis (see Fig. S3 in the
supplemental material). Comparison of antigen-specific antibody
levels between HEU infants whose mothers had been on HAART
or not at the time of the infant’s birth (that is, mothers who had
been receiving antivirals besides azidothymidine [AZT] prophy-
laxis, given per the Kenyan guidelines at the time of the study [30])
showed no significant differences, but total IgG antibody levels
were higher in infants whose mothers had received HAART
(Mann-Whitney U test P value � 0.034; data not shown). When
maternal data recorded closest to the time after the infant’s birth
and at recruitment were considered, there was no association with
the infant’s ability to maintain antibodies against antigens they
had been vaccinated against (see Table S2 in the supplemental
material).

The total MBC percentage correlates with antigen-specific
MBC numbers and antibody levels. Data on the distribution of
total B-cell subsets, the antigen-specific MBC recall response, and
levels of antibodies to vaccine antigens were available for 64 HEU
infants and 29 HUU infants. We correlated these data to deter-
mine if infants who had a higher percentage of switched MBCs
were better at generating recall responses or had higher antibody
levels in their circulation. Infants’ recall responses to measles virus
antigen, PCPs, and total IgG-secreting B cells directly correlated
with the percentage of MBCs in their peripheral blood circulation

(Fig. 3). In addition, recall responses to measles virus antigen, TT,
PCPs, and DT directly correlated with the levels of antibodies
against the same antigens. For the community controls for which
phenotypic, recall response, and antibody data were available, re-
call responses to TT and PCPs correlated with antibody levels
(Spearman correlation coefficient rho values were 0.600 and
0.665, respectively, and P values were �0.039 and 0.036, respec-
tively; data not shown).

DISCUSSION

We undertook a comprehensive analysis of the impact of HIV
exposure on the developing B-cell compartment in HIV-exposed
uninfected infants. Infants born to HIV-infected mothers, even
when the infants are not infected, may be exposed to HIV antigens
and HAART in utero and during breastfeeding (43, 44).

Only a few studies have addressed the impact of HIV exposure
on the B-cell compartment (16, 27–29). A recent report on Mala-
wian HEU infants showed similar B-cell subsets in HEU infants
and HUU infants during the first 18 months of life. In agreement
with that finding, the majority of the B-cell subsets in our study
were similar in HEU infants and HUU infants. However, we ob-
served an association between HIV exposure and a reduced pro-
portion of unswitched MBCs. Although the existence of un-
switched (IgM�) memory B cells was previously debated (45, 46),
there is increasing evidence of their existence and their ability to
undergo secondary germinal center reactions and receive T-cell
help (47). A recent study showed that unswitched memory B cells

FIG 2 Levels of IgG antibodies to total IgG (a) and selected vaccine antigens, TT protein (b), diphtheria toxin (c), Hib (d), PCPs (e), measles virus antigen (f),
and RSV (g), at 18 months of life. Antibody concentrations were compared between HUU infants (open circles) and HEU infants (closed circles). The Wilcoxon
rank sum test was used, and medians are presented. P values of �0.05 were considered significant. Arrows in panels d and f, cutoff for protective antibody
concentration. Since antibody concentrations were not normally distributed, natural log-transformed values of arbitrary antibody concentrations (TT, diph-
theria toxin, PCPs, total IgG) and absolute concentrations (measles virus antigen [in mIU/ml], Hib [in mg/liter], and RSV [in U/ml]) are presented.

B-Cell Responses in HIV-Exposed Infants

July 2016 Volume 23 Number 7 cvi.asm.org 581Clinical and Vaccine Immunology

 on A
ugust 5, 2016 by LIV

E
R

P
O

O
L S

C
H

 O
F

 T
R

O
P

IC
A

L M
E

D
http://cvi.asm

.org/
D

ow
nloaded from

 

http://cvi.asm.org
http://cvi.asm.org/


play a special role in early inflammation through their interaction
with immunomodulatory neutrophils (48). Additionally, it has
been suggested that unswitched memory B cells preferentially re-
enter germinal centers upon antigen reactivation and, hence, play
an active role in sustaining memory, while switched memory B
cells show a propensity to differentiate directly into plasmocytes
(48–50).

In our study setup, it is possible that MBC responses to natural
antigens developed more slowly in these HEU infants due to the
daily co-trimoxazole prophylaxis, routinely given, which may re-
duce the infant’s exposure to a broad spectrum of pathogens, as it
is intended to do (30). However, some studies have reported a lack
of reduction of pneumococcal nasopharyngeal carriage in HIV-
infected children despite co-trimoxazole prophylaxis, suggesting
that the direct effect on exposure to some bacterial infections
could be limited even in HEU infants (51). Co-trimoxazole may
have led to some immunomodulatory mechanisms that may have
resulted in reduced lymphocyte proliferation (52). It is also pos-
sible that HEU infants intrinsically develop a smaller unswitched
B-cell compartment.

The lower proportion of IgM memory B cells in HEU infants
may have clinical consequences, compromising their first-line hu-
moral responses and, hence, predisposing them to infections (53).
While switched memory B cells dominate the secondary response
due to their capacity to be activated in the presence of neutralizing
serum immunoglobulin, it appears that once the levels of neutral-
izing antibodies drop, memory is sustained by IgM reserves (50).
A lower proportion of IgM MBCs in HEU infants may therefore
interfere with their ability to sustain long-term memory should
levels of protective antibodies fall below a threshold. Although
determination of the clinical consequences of immunological
changes in the HEU infants was beyond the scope of the current
study, our observation warrants further investigation to deter-
mine if the smaller amounts of unswitched MBCs in HEU infants,
even in the presence of switched MBCs in amounts similar to
those in HUU infants, possess any clinical consequences.

It is encouraging that similar proportions of switched MBCs

were observed in HEU and HUU infants, implying that HEU in-
fants are capable of mounting robust responses to vaccine anti-
gens. Lower levels of interference from maternal antibodies may
also have contributed to the robust responses, as has been previ-
ously suggested (21). In support of the HEU infants’ ability to
mount robust vaccine responses, recall responses to previously
encountered vaccine antigens were similar in HEU and HUU in-
fants.

For a majority of the vaccine antigens against which the levels
of antibodies were determined, HEU infants were able to maintain
antibody levels similar to those observed in HUU infants, as pre-
viously reported in other settings (21, 22). However, we observed
significantly lower levels of antibodies against measles virus anti-
gen in the HEU infants, but of importance, the majority of these
infants attained the recommended protective level (41). HEU in-
fants had higher antipneumococcal antibody levels than HUU
infants after age 18 months. From previous reports, HIV-infected
women with opportunistic infections might be more likely to
transmit these infections to their infants (54, 55). It is therefore
likely that environmental exposure from an ailing mother may
have led to increased exposure, leading to the observed higher
antipneumococcal antibody levels once co-trimoxazole prophy-
laxis stopped at 18 months of age.

Of concern, in our study population, a large proportion of both
the HEU and HUU infants showed levels of antibodies against
Haemophilus influenzae type b below a threshold deemed protec-
tive, an observation made previously (23). It is possible that MBCs
rather than serological memory sustain protection (56), although
sustained antibody levels at age 24 months have been reported
(22). This implies that antibodies may also play a role and a
booster dose after early infancy may be beneficial to both HEU
and HUU infants. In our study, we concentrated on antibody
levels, and it may be important for future studies to incorporate
antibody functional assays, which would comprehensively ascer-
tain if the HIV-exposed infants are compromised.

The results of analyses of the correlation between the serolog-
ical and recall response data, although they are from a sample with

FIG 3 Correlation of circulating antigen-specific memory B cells with the percentage of switched memory B cells (first row) or levels of IgG antibodies (second
row) against measles virus antigen, TT protein, PCPs, diphtheria toxin, and total IgG. Spearman correlation coefficients were determined, and the Spearman rho
values are presented. P values of �0.05 were considered significant.
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a modest size and therefore should be interpreted with caution,
suggest that infants who made good long-lasting antibody re-
sponses also made better recall responses. The degree of overlap
between the memory B-cell compartment and long-lived anti-
body-secreting cells, plasma cells, is difficult to determine (57),
and both compartments may play important, albeit different,
roles. Given that the infants were in the first 2 years of life, it is
likely that natural exposure was minimal, and therefore, it is more
likely for antibody and memory function responses to correlate
(58). Increased antigenic exposure with age may lead to a loss of
this correlation.

The delayed accumulation of memory B cells in HEU infants
observed in this study warrants further investigation. A recent
report from Malawi showed no differences in the proportions of
memory B cells between HEU infants and HUU infants. Although
the procedures of clinical care for HEU infants are similar in these
two settings, levels of exposure to the malaria parasite, which is
also known to perturb the B-cell compartment (33) in a manner
similar to that in which HIV perturbs that compartment (18, 19),
may have been different. Perturbation of the generation and
maintenance of B-cell memory in malaria parasite infection (59)
and distortion of the B-cell compartment with the appearance of
additional subsets not commonly found in healthy individuals
(33, 60) have been reported. We selected HUU infants with no
previously reported clinical episode of malaria on the basis of
active weekly surveillance. This ensured that they were more com-
parable to the HEU infants who received daily co-trimoxazole
prophylaxis, which, although not the primary aim, protects them
from malaria (61, 62). This may have increased our chances of
identifying subtle immunological differences associated with HIV
exposure, which may be missed in settings where perturbations in
HUU infants may have already been caused by malaria exposure.

In the future, studies on the potential role of HIV exposure on
the infant’s developing immune system will have to be carefully
designed to take into account various environmental exposures,
such as malaria endemicity and PMTCT programs, which, for
example, call for the daily use of co-trimoxazole prophylaxis, to
comprehensively conclude if HIV exposure perturbs the infant’s
developing immune system.

Our findings describe B-cell memory vaccine responses and
complement the current body of data on serological responses
that have shown sustained antibody levels in exposed infants up to
2 years of age (22) and recent findings on B-cell phenotypes in
HEU infants (29). In our study, though, HIV exposure had subtle
effects on the development of the B-cell compartment and was
significantly associated with a reduction in the unswitched mem-
ory B-cell proportions. Our findings also imply that maternal
health may impact the infants’ responses, particularly to pneumo-
coccal antigens. Placing mothers on lifelong HAART earlier may
contribute to reduced vulnerability to infections in general and
benefit both maternal and infant health. Importantly, our study
shows that exposed infants mount robust B-cell responses to vac-
cines and pathogens and that it is therefore likely that these infants
would be able to respond to a future HIV vaccine to prevent in-
fection in this at-risk population.
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