45,624 research outputs found
Wetting and Capillary Condensation in Symmetric Polymer Blends: A comparison between Monte Carlo Simulations and Self-Consistent Field Calculations
We present a quantitative comparison between extensive Monte Carlo
simulations and self-consistent field calculations on the phase diagram and
wetting behavior of a symmetric, binary (AB) polymer blend confined into a
film. The flat walls attract one component via a short range interaction. The
critical point of the confined blend is shifted to lower temperatures and
higher concentrations of the component with the lower surface free energy. The
binodals close the the critical point are flattened compared to the bulk and
exhibit a convex curvature at intermediate temperatures -- a signature of the
wetting transition in the semi-infinite system. Investigating the spectrum of
capillary fluctuation of the interface bound to the wall, we find evidence for
a position dependence of the interfacial tension. This goes along with a
distortion of the interfacial profile from its bulk shape. Using an extended
ensemble in which the monomer-wall interaction is a stochastic variable, we
accurately measure the difference between the surface energies of the
components, and determine the location of the wetting transition via the Young
equation. The Flory-Huggins parameter at which the strong first order wetting
transition occurs is independent of chain length and grows quadratically with
the integrated wall-monomer interaction strength. We estimate the location of
the prewetting line. The prewetting manifests itself in a triple point in the
phase diagram of very thick films and causes spinodal dewetting of ultrathin
layers slightly above the wetting transition. We investigate the early stage of
dewetting via dynamic Monte Carlo simulations.Comment: to appear in Macromolecule
Research Summary on Fracture of Swollen Rubber
Crack propagation and critical strain in swollen rubbe
Non-spherical core collapse supernovae and nucleosynthesis
Motivated by observations of supernova SN 1987A, various authors have
simulated Rayleigh-Taylor (RT) instabilities in the envelopes of core collapse
supernovae (for a review, see Mueller 1998). The non-radial motion found in
these simulations qualitatively agreed with observations in SN 1987A, but
failed to explain the extent of mixing of newly synthesized 56Ni
quantitatively. Here we present results of a 2D hydrodynamic simulation which
re-addresses this failure and covers the entire evolution of the first 5 hours
after core bounce.Comment: 4 pages, 1 figure, LaTeX, requires espcrc1.sty. To appear in Nucl.
Phys. A., the proceedings of the conference "Nuclei in the Cosmos 2000", held
in Aarhus, Denmark, June 27-July 1, 200
Solar array strip and a method for forming the same
A flexible solar array strip is formed by providing printed circuitry between flexible layers of a nonconductive material, depositing solder pads on the printed circuitry, and storing the resulting substrate on a drum from which it is then withdrawn and advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads and are infrared radiation to melt the solder and attach the cells to the circuitry. Excess flux is cleaned from the solar cells which are then encapsulated in a protective coating. The resulting array is then wound on a drum
Method for forming a solar array strip
A flexible solar array strip is formed by a method which lends itself to automatic production techniques. Solder pads are deposited on printed circuitry deposited on a flexible structure. The resultant substrate is stored on a drum from which it is withdrawn and incrementally advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads which are then heated in order to attach the cells to the circuitry. Excess flux is cleaned from the cells which are encapsulated in a protective coating. The resultant array is then spirally wound on a drum
Phase diagram of polymer blends in confined geometry
Within self-consistent field theory we study the phase behavior of a
symmetrical binary AB polymer blend confined into a thin film. The film
surfaces interact with the monomers via short range potentials. One surface
attracts the A component and the corresponding semi-infinite system exhibits a
first order wetting transition. The surface interaction of the opposite surface
is varied as to study the crossover from capillary condensation for symmetric
surface fields to the interface localization/delocalization transition for
antisymmetric surface fields. In the former case the phase diagram has a single
critical point close to the bulk critical point. In the latter case the phase
diagram exhibits two critical points which correspond to the prewetting
critical points of the semi-infinite system. Only below a triple point there is
a single two phase coexistence region. The crossover between these
qualitatively different limiting behaviors occurs gradually, however, the
critical temperature and the critical composition exhibit a non-monotonic
dependence on the surface field. The dependence of the phase behavior for
antisymmetric boundaries is studied as a function of the film thickness and the
strength of the surface interactions. Upon reducing the film thickness or
decreasing the strength of the surface interactions we can change the order of
the interface localization/delocalization transition from first to second. The
role of fluctuations is explored via Monte Carlo simulations of a coarse
grained lattice model. Close to the (prewetting) critical points we observe 2D
Ising critical behavior. At lower temperatures capillary waves of the AB
interface lead to a pronounced dependence of the effective interface potential
on the lateral system size.Comment: submitted to the Journal of Molecular Liquids and Condensed Matter
Physic
Two-body recombination in a quantum mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations
We study entropy generation in a one-dimensional (1D) model of bosons in an
optical lattice experiencing two-particle losses. Such heating is a major
impediment to observing exotic low temperature states, and "simulating"
condensed matter systems. Developing intuition through numerical simulations,
we present a simple empirical model for the entropy produced in this 1D
setting. We also explore the time evolution of one and two particle correlation
functions, showing that they are robust against two-particle loss. Because of
this robustness, induced two-body losses can be used as a probe of short range
magnetic correlations.Comment: 6 pages, 3 figures - v4, published versio
The core helium flash revisited: II. Two and three-dimensional hydrodynamic simulations
We study turbulent convection during the core helium flash close to its peak
by comparing the results of two and three-dimensional hydrodynamic simulations.
We use a multidimensional Eulerian hydrodynamics code based on
state-of-the-art numerical techniques to simulate the evolution of the helium
core of a Pop I star.
Our three-dimensional hydrodynamic simulations of the evolution of a star
during the peak of the core helium flash do not show any explosive behavior.
The convective flow patterns developing in the three-dimensional models are
structurally different from those of the corresponding two-dimensional models,
and the typical convective velocities are smaller than those found in their
two-dimensional counterparts. Three-dimensional models also tend to agree
better with the predictions of mixing length theory. Our hydrodynamic
simulations show the presence of turbulent entrainment that results in a growth
of the convection zone on a dynamic time scale. Contrary to mixing length
theory, the outer part of the convection zone is characterized by a
sub-adiabatic temperature gradient.Comment: 19 pages, 18 figure
Notes from the 3rd Axion Strategy Meeting
In this note we briefly summarize the main future targets and strategies for
axion and general low energy particle physics identified in the "3rd axion
strategy meeting" held during the AXIONS 2010 workshop. This summary follows a
wide discussion with contributions from many of the workshop attendees.Comment: 5 pages, 1 figur
- …
