23,138 research outputs found

    Resonant photon absorption in the low spin molecule V15

    Full text link
    We report the first study of the micro-SQUID response of a molecular system to electromagnetic radiation. The advantages of our micro-SQUID technique in respect to pulsed electron paramagnetic resonance (EPR) techniques consist in the possibility to perform time-resolved experiments (below 1 ns) on submicrometer sizes samples (about 1000 spins) at low temperature (below 100 mK). Resonant photon absorption in the GHz range was observed via low temperature micro-SQUID magnetization measurements of the spin ground state S = 1/2 of the molecular complex V15. The line-width essentially results from intra-molecular hyperfine interaction. The results point out that observing Rabi oscillations in molecular nanomagnets requires well isolated low spin systems and high radiation power. Our first results open the way for time-resolved observations of quantum superposition of spin-up and spin-down states in SMMs.Comment: 7 pages, 5 figure

    Investigations on the hierarchy of reference frames in geodesy and geodynamics

    Get PDF
    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions)

    Heat flow in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid distributions undergoing dissipation in the form of radial heat flow. For a model which corresponds to an incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state after the emission of a small amount of energy. Initially collapsing distributions of matter are not permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a model which corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a shorter hydrodynamic time scale.Comment: 5 pages, 5 figure
    • …
    corecore