31 research outputs found

    Origins of the Tumor Microenvironment: Quantitative Assessment of Adipose-Derived and Bone Marrow–Derived Stroma

    Get PDF
    To meet the requirements for rapid tumor growth, a complex array of non-neoplastic cells are recruited to the tumor microenvironment. These cells facilitate tumor development by providing matrices, cytokines, growth factors, as well as vascular networks for nutrient and waste exchange, however their precise origins remain unclear. Through multicolored tissue transplant procedures; we have quantitatively determined the contribution of bone marrow-derived and adipose-derived cells to stromal populations within syngeneic ovarian and breast murine tumors. Our results indicate that subpopulations of tumor-associated fibroblasts (TAFs) are recruited from two distinct sources. The majority of fibroblast specific protein (FSP) positive and fibroblast activation protein (FAP) positive TAFs originate from mesenchymal stem/stromal cells (MSC) located in bone marrow sources, whereas most vascular and fibrovascular stroma (pericytes, α-SMA+ myofibroblasts, and endothelial cells) originates from neighboring adipose tissue. These results highlight the capacity for tumors to utilize multiple sources of structural cells in a systematic and discriminative manner

    Relaxor Behavior of Pure and Cerium Doped CaxBa1-xNb2O6

    No full text
    Here we report the relaxor behavior of pure and cerium doped Czochralski grown lead free relaxor ferroelectric single crystals CaxBa1-xNb2O6 (CBN-x) (0.18 <= x <= 0.35) using temperature dependent elastic behavior. We observed that the dynamic relaxor behavior strongly varies with the variation of Ca content as well as with doping. Evidence is found for a more pronounced relaxor behavior with increasing Ca content and doping. Characteristic temperature T* (temperature at which static behavior of the polar nanoregions begins to appear) found to be unaffected with Ca content variation as well as doping

    Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung

    No full text
    Immunotherapy such as nivolumab is a new promising therapeutic option for advanced stage non small cell lung cancer (NSCLC). Due to the interference with the immune system previously unknown side effects are observed both in clinical studies and experience. Autoimmune phenomena effecting skin, gastrointestinal tract, endocrine glands, kidney and lung have been described. Up to now there is only limited information regarding potential cardiac side effects. We present a case of symptomatic drug induced myocarditis after nine cycles of nivolumab in a patient with efficient anticancer response

    Langzeitverläufe nach hausärztlicher Sepsisnachsorge

    No full text

    Comparability of compressed sensing-based gradient echo perfusion sequence SPARSE and conventional gradient echo sequence in assessment of myocardial ischemia

    No full text
    PURPOSE: Stress perfusion imaging plays a major role in non-invasive detection of coronary artery disease. We compared a compressed sensing-based and a conventional gradient echo perfusion sequence with regard to image quality and diagnostic performance. METHOD: Patients sent for coronary angiography due to pathologic stress perfusion CMR were recruited. All patients underwent two adenosine stress CMR using conventional TurboFLASH and prototype SPARSE sequence as well as quantitative coronary angiography with fractional flow reserve (FFR) within 6 weeks. Coronary angiography was considered gold standard with FFR 90 % for identification of myocardial ischemia. Diagnostic performance of perfusion imaging was assessed in basal, mid-ventricular and apical slices by quantification of myocardial perfusion reserve (MPR) analysis utilizing the signal upslope method and a deconvolution technique using the fermi function model. RESULTS: 23 patients with mean age of 69.6 ± 8.9 years were enrolled. 46 % were female. Image quality was similar in conventional TurboFLASH sequence and SPARSE sequence (2.9 ± 0.5 vs 3.1 ± 0.7, p = 0,06). SPARSE sequence showed higher contrast-to-noise ratio (52.1 ± 27.4 vs 40.5 ± 17.6, p < 0.01) and signal-to-noise ratio (15.6 ± 6.2 vs 13.2 ± 4.2, p < 0.01) than TurboFLASH sequence. Dark-rim artifacts occurred less often with SPARSE (9 % of segments) than with TurboFLASH (23 %). In visual assessment of perfusion defects, SPARSE sequence detected less false-positive perfusion defects (n = 1) than TurboFLASH sequence (n = 3). Quantitative perfusion analysis on segment basis showed equal detection of perfusion defects for TurboFLASH and SPARSE with both upslope MPR analysis (TurboFLASH 0.88 ± 0.18; SPARSE 0.77 ± 0.26; p = 0.06) and fermi function model (TurboFLASH 0.85 ± 0.24; SPARSE 0.76 ± 0.30; p = 0.13). CONCLUSIONS: Compressed sensing perfusion imaging using SPARSE sequence allows reliable detection of myocardial ischemia
    corecore