150 research outputs found

    Differentiation of Schistosoma haematobium from related schistosomes by PCR amplifying an inter-repeat sequence.

    Get PDF
    Schistosoma haematobium infects nearly 150 million people, primarily in Africa, and is transmitted by select species of local bulinid snails. These snails can host other related trematode species as well, so that effective detection and monitoring of snails infected with S. haematobium requires a successful differentiation between S. haematobium and any closely related schistosome species. To enable differential detection of S. haematobium DNA by simple polymerase chain reaction (PCR), we designed and tested primer pairs from numerous newly identified Schistosoma DNA repeat sequences. However, all pairs tested were found unsuitable for this purpose. Differentiation of S. haematobium from S. bovis, S. mattheei, S. curassoni, and S. intercalatum (but not from S. margrebowiei) was ultimately accomplished by PCR using one primer from a newly identified repeat, Sh110, and a second primer from a known schistosomal splice-leader sequence. For evaluation of residual S. haematobium transmission after control interventions, this differentiation tool will enable accurate monitoring of infected snails in areas where S. haematobium is sympatric with the most prevalent other schistosome species

    Risk factors for the transmission of kala-azar in Fangak, South Sudan

    Get PDF
    This article reports a case controlled study of kala-azar done in Fangak County in 2007. Fifty-six percent of the cases were under 5 years old. Most patients came for treatment two months or more after the onset of symptoms.Outdoor night-time activities and the use of “smoking” (non-insecticide treated) bed nets were associated with kala-azar infection whereas the use of bed nets during the rainy season decreased the risk of infection.It is recommended that there should be a greater distribution of treated bed nets and more kala-azar treatment centres in the county.Note: This article reports the results of a study into some risk factors for the transmission of kala-azar in Fangak in 2007. There was another recent outbreak in this area on 2010 (1, 2). Recommendations were again made to distribute more treated bed nets and to open more kala-azar treatment centres. The official Ministry of Health guideline for the treatment of kala-azar is at the end of this article

    Impact of Drought on the Spatial Pattern of Transmission of Sehistosoma haematobium in Coastal Kenya

    Get PDF
    We analyzed temporal changes in spatial patterns of active Schistosoma haematobium infection in different age groups and associated them with ponds infested with Bulinus snails. A major drought between 2001 and 2009 resulted in drying of ponds that were known sources of infection, and we detected very few or no snails in ponds that were infested in the past. The household-level spatial pattern of infection for children of various age groups in 2009 was contrasted with historical data from 2000. The significant local clustering of high- and low-infection levels among school-aged children that occurred in 2000 was absent in 2009. We attribute the disappearance of significant clustering around historical transmission hot spots to a decade-long drought in our study area. The implications of extreme weather and climate conditions on risk and transmission of S. haematobium and their relevance to control strategies are discussed. Copyright © 2011 by The American Society of Tropical Medicine and Hygiene

    Anemia among Children Exposed to Polyparasitism in Coastal Kenya

    Get PDF
    Anemia represents a substantial problem for children living in areas with limited resources and significant parasite burden. We performed a cross-sectional study of 254 Kenyan preschool-and early school-age children in a setting endemic for multiple chronic parasitic infections to explore mechanisms of their anemia. Complete venous blood cell counts revealed a high prevalence of local childhood anemia (79%). Evaluating the potential links between low hemoglobin and socioeconomic factors, nutritional status, hemoglobinopathy, and/or parasite infection, we identified age < 9 years (odds ratio [OR]: 12.0, 95% confidence interval [CI]: 4.4, 33) and the presence of asymptomatic malaria infection (OR: 6.8, 95% CI: 2.1, 22) as the strongest independent correlates of having anemia. A total of 130/155 (84%) of anemic children with iron studies had evidence of iron-deficiency anemia (IDA), 16% had non-IDA; 50/52 of additionally tested anemic children met soluble transferrin-receptor (sTfR) criteria for combined anemia of inflammation (AI) with IDA. Children in the youngest age group had the greatest odds of iron deficiency (OR: 10.0, 95% CI: 3.9, 26). Although older children aged 9-11 years had less anemia, they had more detectable malaria, Schistosoma infection, hookworm, and proportionately more non-IDA. Anemia in this setting appears multifactorial such that chronic inflammation and iron deficiency need to be addressed together as part of integrated management of childhood anemia

    Can Prenatal Malaria Exposure Produce an Immune Tolerant Phenotype?: A Prospective Birth Cohort Study in Kenya

    Get PDF
    In a prospective cohort study of newborns residing in a malaria holoendemic area of Kenya, Christopher King and colleagues find a subset of children born to malaria-infected women who acquire a tolerant phenotype, which persists into childhood and is associated with increased susceptibility to malarial infection and anemia

    The risks of malariainfection in Kenya in 2009

    Get PDF
    BACKGROUND: To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009. METHODS: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10 at a 1 x 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped. RESULTS: A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10 was predicted to be &gt; or =40% and were largely located around the shores of Lake Victoria. CONCLUSION: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years

    Age-Stratified Profiles of Serum IL-6, IL-10, and TNF-α Cytokines Among Kenyan Children with Schistosoma haematobium, Plasmodium falciparum, and Other Chronic Parasitic Co-Infections.

    Get PDF
    In a study of children having polyparasitic infections in a Schistosoma haematobium-endemic area, we examined the hypothesis that S. haematobium-positive children, compared with S. haematobium-negative children (anti-soluble worm antigen preparation [SWAP] negative and egg negative) have increased systemic production of pro-inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α) and decreased down-regulatory IL-10. A total of 804 children, 2-19 years of age, were surveyed between July and December 2009 and tested for S. haematobium, Plasmodium falciparum, filariasis, and soil-transmitted helminth infections. Plasma levels of IL-6, TNF-α, and IL-10 were compared for S. haematobium-positive and S. haematobium-negative children, adjusting for malaria, filaria, and hookworm co-infections, and for nutritional status, age group, sex, and geographic location. IL-10 was significantly elevated among children infected with S. haematobium, showing bimodal peaks in 7-8 and 13-14 years age groups. IL-10 was also higher among children who were acutely malnourished, whereas IL-10 levels were lower in the presence of S. haematobium-filaria co-infection. After adjustment for co-factors, IL-6 was significantly elevated among children of 5-6 years and among those with P. falciparum infection. Lower levels of IL-6 were found in malaria-hookworm co-infection. High levels of TNF-α were found in children aged 11-12 years regardless of infection status. In addition, village of residence was a strong predictor of IL-6 and IL-10 plasma levels. In adolescent children infected with S. haematobium, there is an associated elevation in circulating IL-10 that may reduce the risk of later morbidity. Although we did not find a direct link between S. haematobium infection and circulating pro-inflammatory IL-6 and TNF-α levels, future T-cell stimulation studies may provide more conclusive linkages between infection and cytokine responses in settings that are endemic for multiple parasites and multiple co-infections

    An Outbreak of Rift Valley Fever in Northeastern Kenya, 1997-98

    Get PDF
    In December 1997, 170 hemorrhagic fever-associated deaths were reported in Carissa District, Kenya. Laboratory testing identified evidence of acute Rift Valley fever virus (RVFV). Of the 171 persons enrolled in a cross-sectional study, 31(18%) were anti-RVFV immunoglobulin (Ig) M positive. An age-adjusted IgM antibody prevalence of 14% was estimated for the district. We estimate approximately 27,500 infections occurred in Garissa District, making this the largest recorded outbreak of RVFV in East Africa. In multivariate analysis, contact with sheep body fluids and sheltering livestock in one’s home were significantly associated with infection. Direct contact with animals, particularly contact with sheep body fluids, was the most important modifiable risk factor for RVFV infection. Public education during epizootics may reduce human illness and deaths associated with future outbreaks

    Evaluation of the health-related quality of life of children in Schistosoma haematobium-endemic communities in Kenya: a cross-sectional study.

    Get PDF
    BACKGROUND: Schistosomiasis remains a global public health challenge, with 93% of the ~237 million infections occurring in sub-Saharan Africa. Though rarely fatal, its recurring nature makes it a lifetime disorder with significant chronic health burdens. Much of its negative health impact is due to non-specific conditions such as anemia, undernutrition, pain, exercise intolerance, poor school performance, and decreased work capacity. This makes it difficult to estimate the disease burden specific to schistosomiasis using the standard DALY metric. METHODOLOGY/PRINCIPAL FINDINGS: In our study, we used Pediatric Quality of Life Inventory (PedsQL), a modular instrument available for ages 2-18 years, to assess health-related quality of life (HrQoL) among children living in a Schistosoma haematobium-endemic area in coastal Kenya. The PedsQL questionnaires were administered by interview to children aged 5-18 years (and their parents) in five villages spread across three districts. HrQoL (total score) was significantly lower in villages with high prevalence of S. haematobium (-4.0%, p<0.001) and among the lower socioeconomic quartiles (-2.0%, p<0.05). A greater effect was seen in the psychosocial scales as compared to the physical function scale. In moderate prevalence villages, detection of any parasite eggs in the urine was associated with a significant 2.1% (p<0.05) reduction in total score. The PedsQL reliabilities were generally high (Cronbach alphas ≥0.70), floor effects were acceptable, and identification of children from low socioeconomic standing was valid. CONCLUSIONS/SIGNIFICANCE: We conclude that exposure to urogenital schistosomiasis is associated with a 2-4% reduction in HrQoL. Further research is warranted to determine the reproducibility and responsiveness properties of QoL testing in relation to schistosomiasis. We anticipate that a case definition based on more sensitive parasitological diagnosis among younger children will better define the immediate and long-term HrQoL impact of Schistosoma infection
    corecore