20 research outputs found

    The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation

    Full text link
    The increasing complexity of Earth system models has inspired efforts to quantitatively assess model fidelity through rigorous comparison with best available measurements and observational data products. Earth system models exhibit a high degree of spread in predictions of land biogeochemistry, biogeophysics, and hydrology, which are sensitive to forcing from other model components. Based on insights from prior land model evaluation studies and community workshops, the authors developed an open source model benchmarking software package that generates graphical diagnostics and scores model performance in support of the International Land Model Benchmarking (ILAMB) project. Employing a suite of in situ, remote sensing, and reanalysis data sets, the ILAMB package performs comprehensive model assessment across a wide range of land variables and generates a hierarchical set of web pages containing statistical analyses and figures designed to provide the user insights into strengths and weaknesses of multiple models or model versions. Described here is the benchmarking philosophy and mathematical methodology embodied in the most recent implementation of the ILAMB package. Comparison methods unique to a few specific data sets are presented, and guidelines for configuring an ILAMB analysis and interpreting resulting model performance scores are discussed. ILAMB is being adopted by modeling teams and centers during model development and for model intercomparison projects, and community engagement is sought for extending evaluation metrics and adding new observational data sets to the benchmarking framework.Key PointThe ILAMB benchmarking system broadly compares models to observational data sets and provides a synthesis of overall performancePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146994/1/jame20779_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146994/2/jame20779.pd

    Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO 2

    Get PDF
    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO 2 ) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO 2 anomalies. Here we examined how the temporal evolution of CO 2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO 2 variability. We developed atmospheric CO 2 patterns from each of these mechanisms during 1997ā€“2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO 2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO 2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO 2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9ā€‰Ā±ā€‰0.4 Pg C yr āˆ’1 ā€‰K āˆ’1 . These results underscore the need for accurate attribution of the drivers of CO 2 variability prior to using contemporary observations to constrain longā€term ESM responses. Key Points Accurate attribution of CO 2 variability is required to constrain coupled models Combined influence of drought and fire exceed ecosystem responses to temperature Temporal and spatial smoothing of CO 2 observations masks variability from firePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109962/1/gbc20215.pd

    Global fire emissions estimates during 1997-2016

    Get PDF
    Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997-2016. The modeling system, based on the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.21015 grams of carbon per year (Pg Cyr-1) during 1997-2016, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11% higher than our previous estimates (GFED3) during 1997-2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (-19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org
    corecore