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Abstract The response of the carbon cycle in prognostic Earth systemmodels (ESMs) contributes significant
uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual
variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the
representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified
the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this
variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how
the temporal evolution of CO2 in different latitude bands may be used to separate contributions from
temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric
CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model.
NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to
CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver.
We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses
to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed
that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting
for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr�1 K�1.
These results underscore the need for accurate attribution of the drivers of CO2 variability prior to
using contemporary observations to constrain long-term ESM responses.

1. Introduction

Observed variations in the growth rate of atmospheric carbon dioxide, CO2, provide insight about the
processes that govern land and ocean sinks for anthropogenic CO2. Interannual variability in atmospheric
CO2 is tightly linked with volcanic eruptions [Farquhar and Roderick, 2003; Frölicher et al., 2013] and
climate modes, including El Niño–Southern Oscillation (ENSO) [Bacastow, 1976; Jones et al., 2001; Zeng et al.,
2005; Schwalm et al., 2011]. Evidence from carbon isotopes suggests that these CO2 variations originate
mostly from terrestrial ecosystems, rather than ocean carbon exchange [Francey et al., 1995; Battle et al., 2000;
Rayner et al., 2008; Alden et al., 2010].

Recent work has improved our understanding of the underlying processes regulating variability in carbon fluxes
within terrestrial ecosystems. Many studies have noted a positive correlation between land temperature
anomalies and the atmospheric CO2 growth rate [Keeling et al., 1995; Braswell, 1997; Rafelski et al., 2009],
especially during the warm El Niño phase of ENSO [Wang et al., 2013]. Tropical ecosystem responses to warmer
temperature tend to release CO2 to the atmosphere as a consequence of several physiological processes that
operate in concert. Specifically, gross primary production (GPP) in tropical forests generally decreases in
response to lower carboxylation efficiency and other stresses [Berry and Bjorkman, 1980; Doughty and Goulden,
2008]. Autotrophic respiration responses also likely contribute to carbon losses as a consequence of greater
leaf, stem, and root maintenance costs. In parallel, microbial responses to higher temperature cause
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decomposition to accelerate [Atkin, 2003; Davidson and Janssens, 2006; Mahecha et al., 2010], increasing
emissions from litter and soil organic matter. These plant and microbial responses to temperature are widely
represented in terrestrial ecosystem models, albeit with varying temperature dependencies [Todd-Brown et al.,
2013]. We hereafter refer to the combined set of these canopy-scale processes (and their temperature
dependencies) as the direct temperature response of net ecosystem exchange (NEE); alone, this response is
sufficient to generate a strong positive relationship between interannual temperature variations and tropical
CO2 fluxes in models [Wang et al., 2013].

Climate modes also modify hydrology, complicating explanations of atmospheric CO2 variability that rely
solely on NEE responses to temperature. Shifts in atmospheric circulation from Pacific or Atlantic sea surface
temperature anomalies modify rainfall in tropical and subtropical terrestrial ecosystems [Ropelewski and
Halpert, 1987; Nobre and Shukla, 1996]. In certain wet tropical forests, seasonal or interannual drought
reduces soil respiration considerably, whereas GPP may be less affected as a consequence of increased light
availability and the ability of deeply rooted trees to withstand desiccation of surface soil layers [Saleska et al.,
2003; Bonal et al., 2008]. Due to a paucity of data, it remains unclear how tropical drought responses vary
along moisture gradients or with vegetation type; however, top-down constraints from atmospheric CO2

suggest that in the Amazon, basin-wide net carbon uptake is reduced in drought years [Gatti et al., 2014]. In
temperate ecosystems, eddy covariance observations likewise indicate that, overall, drought-induced
reductions in GPP exceed those for ecosystem respiration, and therefore, net carbon uptake is reduced
[Schwalm et al., 2010].

In addition to the temperature and drought stress impacts on NEE described above, fires also contribute to
atmospheric CO2 variability on interannual time scales. Fire emissions are usually confined to the dry
season in tropical forests and are regulated both by climate and human drivers [van der Werf et al., 2010;
Bowman et al., 2011]. In savannas, drought conditions often increase burning in woodlands but reduce
fuel availability and emissions in drier grasslands [Randerson et al., 2005]. Fires also contribute to interannual
variability in atmospheric methane (CH4) [Bousquet et al., 2006] and are a dominant driver of interannual
variability in carbon monoxide (CO) [Langenfelds et al., 2002; van der Werf et al., 2004]. When CH4 and CO
observations are combined with measurements of emission ratios from smoke plumes [Andreae and Merlet,
2001; Akagi et al., 2011], they provide evidence for a significant contribution from fires to variability in
atmospheric CO2 [Langenfelds et al., 2002; van der Werf et al., 2004; Gatti et al., 2014].

Partitioning the observed variability in atmospheric CO2 to temperature, drought, and fire drivers remains
an important research challenge because the correct balance of mechanisms is needed to simulate the
global carbon cycle accurately in Earth system models (ESMs). Recently, Wang et al. [2013] found that the
temperature sensitivity of tropical NEE was the dominant mechanism explaining CO2 interannual variability,
with considerably weaker controls from precipitation-induced changes in NEE and even smaller
contributions from fires. Similarly, Cox et al. [2013] found that heterotrophic respiration responses in
C4MIP models were the primary drivers of model-to-model differences in the sensitivity of tropical NEE to
temperature, with no explicit estimate of fire emissions considered in model comparisons with observations.
In both studies, the CO2 record used in the analysis was a globally averaged time series that was further
temporally smoothed during estimation of the growth rate, either by using a 12month running mean [Wang
et al., 2013] or by differencing the annual means from two consecutive years [Cox et al., 2013].

Here we examined how higher-resolution atmospheric CO2 data may improve the attribution process. An
important motivation was the observation that many of the climate extremes over the last several
decades have been confined to specific regions [Reichstein et al., 2013], and thus, biospheric responses to
these events likely leave an asymmetric (and unique) imprint on the meridional distribution of CO2. In
addition, emission anomalies from fires are phase locked to the dry season in tropical forests and are closely
associated with regional hotspots of land use change, further enabling separation of this tracer from NEE
responses to temperature and drought stress.

In section 2, we describe our method to simulate interannual variability in atmospheric CO2 from simple basis
fluxes derived from gridded climate data. These basis fluxes were propagated through an atmospheric
transport model [Suntharalingam et al., 2004; Nassar et al., 2010], enabling direct comparison of simulated
CO2 against meridional and temporal patterns in monthly atmospheric observations. In section 3, we present
the relative contribution of individual drivers and combinations thereof to the observed interannual
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variability of CO2 during 1997–2011 determined from optimal estimation. In section 4, we discuss how the
interplay among these drivers provides both improved estimates of the climate sensitivity of NEE and
directions for reducing carbon cycle uncertainties in ESMs.

2. Data and Methods
2.1. Atmospheric CO2 Observations

We analyzed CO2 interannual variability for the 15 year period from 1997 through 2011 using monthly mean
NOAA global cooperative air sampling network observations [Dlugokencky et al., 2013] at marine boundary
layer (MBL) sites with greater than 70% data coverage for the time period of interest (Figures 1a–1f and
Table 1). We chose this period based on the availability of fire emissions data [van der Werf et al., 2010] to
compare with temperature and drought effects. CO2 interannual variability was calculated by (1) detrending
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Figure 1. Observations of atmospheric CO2 from 1997 to 2011 in different latitude bands. (a–f ) Original monthly mean
time series and (g–l) the interannual component of atmospheric CO2 variations from marine boundary layer (MBL) sites
in the NOAA ESRL global cooperative air sampling network. Observations were binned into six latitude bands for com-
parison with simulated CO2. Station acronyms and location information appear in Table 1.
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the observed time series at each site with a third-order polynomial, (2) computing a mean annual cycle
from the detrended time series, (3) removing the mean annual cycle from the original time series, and
(4) fitting a third-order polynomial to the time series obtained from step (3) [Keppel-Aleks et al., 2013]. Our
results were largely insensitive to the method of calculating the monthly mean CO2 or to detrending
methodology (data not shown). We averaged the CO2 time series into six bands encompassing the tropics,
midlatitude, and high latitude in each hemisphere for comparison with simulated CO2 response functions
(Figures 1g–1l). Although the resulting time series for CO2 variability share similarities, each band is
influenced by a different mix of local and remote fluxes modified by atmospheric transport.

2.2. Atmospheric CO2 Simulated From Simple Basis Fluxes

We simulated monthly mean CO2 patterns arising from prescribed fluxes using the GEOS-Chem atmospheric
transport model, version 9.1.2 [Suntharalingam et al., 2004; Nassar et al., 2010]. The model was driven by
3- to 6-hourly Modern Era Retrospective-Analysis for Research and Applications reanalysis meteorology
[Rienecker et al., 2011] at 4° (latitude) by 5° (longitude) horizontal resolution with 47 vertical layers. We
sampled monthly mean model output at the grid cells containing the MBL sites, and we detrended and
binned simulated CO2 identically to the observations. CO2 response functions from individual basis fluxes
were carried as individual tracers.

Table 1. Marine Boundary Layer (MBL) Sites in NOAA’s Global Cooperative Air Sampling Network

Region Station Acronym Latitude [°N] Longitude [°E]

60–90°N Alert, Nunavut, Canada ALT 82.5 �62.5
Ny Ålesund, Svalbard ZEP 78.9 11.9

Barrow, Alaska BRW 71.3 �156.6
Storhofdi, Iceland ICE 63.4 �20.1

23–60°N Mace Head, Ireland MHD 53.3 �9.9
Shemya, Alaska SHM 52.7 174.1

Terceira Island, Azores AZR 38.8 �27.4
Tudor Hill, Bermuda BMW 32.3 �64.7

Midway Island MID 28.2 �177.4
Key Biscayne, Florida KEY 25.7 �80.2
Pacific Ocean 25°N POCN25 25.0 �139.0

0–23°N Pacific Ocean 20°N POCN20 20.0 �141.0
Cape Kumukahi, Hawaii KUM 19.5 225.0
Pacific Ocean 15°N POCN15 15.0 �145.0

Mariana Islands, Guam GMI 13.4 144.8
Ragged Point, Barbados RPB 13.2 �59.4

Pacific Ocean 10°N POCN10 10.0 �149.0
Pacific Ocean 5°N POCN05 5.0 �151.0

0–23°S Mahe Island, Seychelles SEY �4.7 55.2
Pacific Ocean 5°S POCS05 �5.0 �159.0
Ascension Island ASC �8.0 �14.4
Pacific Ocean 10°S POCS10 �10.0 �161.0

Tutuila, American Samoa SMO �14.3 �170.6
Pacific Ocean 15°S POCS15 �15.0 �171.0
Pacific Ocean 20°S POCS20 �20.0 �174.0

23–60°S Pacific Ocean 25°S POCS25 �25.0 �171.0
Pacific Ocean 30°S POCS30 �30.0 �176.0
Pacific Ocean 35°S POCS35 �35.0 �180.0

Cape Grim, Tasmania CGO �40.7 144.7
Baring Head, New Zealand BHD �41.0 174.0

Crozet Island CRZ �46.5 51.9

60–90°S Palmer Station, Antarctica PSA �64.0 �64.0
Syowa, Antarctica SYO �69.0 39.6

Halley Bay, Antarctica HBA �75.6 �26.5
South Pole SPO �90.0 �24.8
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We used spatially resolved monthly climate time series to construct a series of NEE sensitivity basis fluxes
without closely tying our results to the parameterizations of any specific ecosystem model (Figure 2).
These fluxes were uniform across an entire month. To represent the influence of temperature stress on NEE,
we used land air temperature anomalies at 5° by 5° resolution from the Climatic Research Unit (CRU) at
the Hadley Centre [Jones et al., 2012]. We modeled the interannually varying component of the NEE flux due
to temperature variations (NEET) as follows:

NEET t; x; yð Þ ¼ κT � T t; x; yð Þ � T m; x; yð Þ
� �

�Q
T m;x;yð Þ�20

10

� �
10 �NPP x; yð Þ (1)

where the temperature anomaly at each grid cell from its monthly long-term mean (T t; x; yð Þ � T m; x; yð Þ) is
scaled by the annually integrated net primary production (NPP), following the assumption that the
magnitude of monthly NEE anomalies at a particular location should be proportional to gross ecosystem
fluxes at the same location. In equation (1), t represents time (year and month), whilem represents month of
the year for the long-term temperature climatology, x represents latitude, and y represents longitude. For
the gridded annual mean NPP fluxes we used a climatological estimate derived from the Carnegie-Ames-
Stanford Approach (CASA) biogeochemical model at a 1° by 1° resolution [Randerson et al., 1997]. Given
the high degree of spatial correlation of annual NPP from models derived from satellite estimates of the
fraction of absorbed photosynthetically active radiation and that we only used NPP to scale the spatial
pattern of time-evolving NEE anomalies, the results we present have only a marginal sensitivity to specific
parameterizations within the biogeochemical model. We included an exponential term (Q10 = 2) that
reduced the impact of temperature anomalies at colder temperatures. The normalization constant κT
was determined such that the standard deviation in annually integrated NEET was 1 Pg C yr�1 globally
over 15 years.

This model assumes that NEE variations on interannual time scales can be represented as a linear
perturbation of temperature anomalies, with the magnitude of the response proportional to the gross
ecosystem fluxes in a given region. Although ecosystems may exhibit nonlinear or threshold responses
to temperature or drought stress [Berry and Bjorkman, 1980; Reichstein et al., 2013], we caution that
discriminating and fitting such nonlinear responses within the 15 year duration of our study period
would lead to a loss in the robustness of our results given the required increase in the number of fitting
parameters and degrees of freedom. Analysis of nonlinear climate impacts on terrestrial ecosystem fluxes
may better be suited for future analysis when longer global time series of fire emissions and ecosystem
fluxes permit the use of more sophisticated statistical models.

Similarly, we developed a family of basis fluxes to represent the impact of drought stress (D) on NEE (NEED)
using three drivers that reflect moisture stress on different time scales. We used precipitation from the
Global Precipitation Climatology Project (GPCP) [Adler et al., 2003], which reflects the short-term water inputs
to the ecosystem. We also used two metrics from NCEP reanalysis climatology [Kalnay et al., 1996]: Palmer
Drought Severity Index (PDSI) [Dai et al., 2004], which reflects the cumulative departure from local moisture
balance, and potential evaporation (PE), which reflects the evaporative demand given a sufficient soil
water source. We used a similar framework to estimate the perturbation to NEE (NEED) from drought stress
(D) for each of these proxies:

NEED t; x; yð Þ ¼ κD�ðD t; x; yð Þ � D m; x; yð ÞÞ�NPP x; yð Þ (2)

Drought Stress
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NEE anomalies

Basis Fluxes

GFED 3 Emissions 
and ATSR Fire Counts

GEOS-Chem

CO2 response 
functions

NOAA GMD 
CO2 observations

Detrending and 
binning Optimal Estimation Climate sensitivity

coefficients

Figure 2. Flow chart for optimal estimation of model parameters and climate sensitivity coefficients.
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As in equation (1), κD was a normalization constant such that each gridded NEED time series had a global
standard deviation of 1 Pg C yr�1 from 1997 to 2011. For this convention, CO2 fluxes were positive to
the atmosphere when precipitation had a positive deviation relative to climatology and when PDSI was in a
positive phase (indicating water abundance).

For fires, we used emissions from the Global Fire Emissions Database (GFED3) [van der Werf et al., 2010],
which combines satellite observations of active fire counts, burned area, and vegetation productivity with the
CASA biogeochemical model to calculate fire emissions. We also prescribed a mostly independent set of
fire emissions scaled according to the Along-Track Scanning Radiometer (ATSR) distribution of active fires
[Arino and Melinotte, 1998]. Because ATSR is a polar-orbiting satellite and therefore oversamples fires at
high latitudes relative to midlatitude and tropical fires, we scaled the ATSR fire counts in 10° latitude bins by
the fraction of GFED emissions occurring within each bin, thus imposing GFED’s latitudinal emissions
distribution while preserving distinct patterns of variability between the two basis flux sets.

2.3. Optimal Estimation

Simulated CO2 response functions from global and regional fluxes were compared against observed
interannual variability either individually or in linear combination. We determined scale factors, λ, for each
driver included in the model by minimizing the cost function:

L ¼
X6

φ¼1
0:5
XN

t¼1

CO2 φ; tð Þ � λ �M φ; tð Þ
σ φð Þ

� �2

þ N In σ φð Þ
 !

(3)

In equation (3), CO2 (φ,t) is the observed interannual variability in each latitude band, φ. The matrix
M(φ,t) contains the individual CO2 response functions simulated by GEOS-Chem from driver fluxes with
1 Pg C yr�1 standard deviation. The vector λ contains the optimal scale factors that modulate the standard
deviation of the fluxes in each model case. We did not expect that our simple flux models would
account for all variability across each latitude band. In the Northern Hemisphere, for instance, observations
were characterized by greater temporal variability that likely owes to contributions from fossil fuel fluxes
and other processes that were not resolved in our modeling framework. We therefore simultaneously
fit parameters σ(φ) to represent the unresolved variability in each latitude band. Their optimal values
reflect the balance between the sum-squared residual and penalty terms of the cost function that resulted
in each latitude band contributing equally to the overall sum-squared residual. Our optimizations
were conducted without prior constraints on the fluxes. To account for correlations among successive
months, we determined the effective number of CO2 observations in each latitude band assuming an
autoregressive (AR1) model and inflated the posterior error covariance matrix by the ratio of actual to
effective sample size. We tested the sensitivity of the results to different cost function formulations
by weighting the six latitude bands by area fraction and by assuming a t distribution for errors. In each
case, the optimized λ values remained within the reported error bars, demonstrating the robustness of the
optimization results presented in section 3.

We assessed the quality of our regression models for each latitude band using both the familiar Pearson’s R2

coefficient (which indicates the degree of correspondence between model and data) and the RMS
amplitude factor. The amplitude factor, A, was calculated as a ratio of the standard deviation in the simulated
CO2 time series (adjusted by the appropriate λ values) to the standard deviation in the observed CO2 time
series (equation (4)) and therefore provides information about the magnitude of variability explained by
each flux model.

A φð Þ ¼ std λM φð Þð Þ
std CO2 φð Þð Þ (4)

We used the F test to compare the relative performance of different regression models; for this test, the
number of data was adjusted by the effective sampling rate calculated from the AR1 model. We also used
posterior predictive model checking [Gelman et al., 1996] to test whether synthetic CO2 data generated
from our optimized regression models reproduced the observed correlations among temperature, drought,
and fire. This provides a quality metric that focuses specifically on the ability to faithfully attribute signal
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to each driver, rather than just reflecting the overall goodness of fit as given by the R2 coefficient. This model
comparison was carried out by fitting synthetic data using single-driver, single-region regression models
and by comparing the resulting λ values to those determined from fits to the observations themselves.

3. Results

CO2 fluxes from temperature, drought, and fire emissions captured many of the large-scale features in
observed atmospheric CO2 variability from 1997 to 2011 (Figure 3). Contributions from fossil [Andres et al.,
2011] and ocean fluxes [Doney et al., 2009] (Figure 3b) were relatively small across all latitudes and
consistent with earlier work [Bousquet et al., 2000; Nevison et al., 2008; Rayner et al., 2008]. We optimized
scale factors (λ) for each of the terrestrial CO2 response functions using single-factor regression models
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Figure 3. Hovmöller diagrams for observed and simulated CO2 interannual variability. (a) Observed variability determined
fromMBL sites (Figure 1 and Table 1). (b) CO2 response functions derived from the sum of fossil fuel and ocean fluxes. (c) CO2
response function derived from the temperature sensitivity of NEE. CO2 response functions derived from the drought
sensitivity of NEE determined from (d) precipitation, (e) Palmer Drought Severity Index (PDSI), and (f) potential evaporation
(PE). The CO2 patterns arising from drought stress metrics were scaled by �1, since the simulated patterns were negatively
correlated with the observations. CO2 response functions from fire emissions from (g) the Global Fire Emissions Database
version 3 (GFED3) and (h) scaled Along Track Scanning Radiometer (ATSR) fire counts. X axis tick marks and year labels
correspond to the beginning of each calendar year.
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(Table 2). Since the CO2 response functions were simulated from flux fields normalized to 1 Pg C yr�1

standard deviation, the values of λ can be interpreted as the standard deviation of the optimized carbon
fluxes (in units of Pg C yr�1) owing to individual climate drivers over the 15 year period.

Among individual terrestrial ecosystem drivers, the temperature-driven NEE model was positively correlated
with the observed CO2 patterns and explained the largest amount of variance across different latitude
bands with an average R2 of 0.46. After optimization, the temperature-driven NEE fluxes had a standard
deviation of 0.80 ± 0.07 Pg C yr�1 and the adjusted atmospheric CO2 response function had a standard
deviation that was 61% relative to that of the observations (Table 2).

The CO2 response function from NEE responding to the Palmer Drought Severity Index (PDSI) had the second
most explanatory power with a mean R2 of 0.42 and an adjusted standard deviation (hereafter termed the
amplitude factor) that was 55%. The CO2 patterns arising from PDSI and precipitation were negatively
correlated with the observations, indicating that drought stress increased CO2 growth and decreased
terrestrial carbon storage on interannual time scales. The two fire emissions time series, GFED3 and ATSR,
were the third most important class of models, with mean R2 values of 0.36 and 0.34, respectively, and
each with an amplitude factor of 51% of the observations. The optimized GFED3 flux standard deviation of
0.40 ± 0.05 Pg C yr�1 was 25% higher than the standard deviation of the original GFED3 emissions time
series (0.32 Pg C yr�1) but within expected uncertainties [van der Werf et al., 2010]. Although the precipitation
and potential evaporation (PE) CO2 patterns were qualitatively similar to PDSI (Figures 3d–3f), the mean R2

was only 0.34 for precipitation and 0.20 for PE, in part due to a likely time delay in NEE responses to
precipitation anomalies [Zeng et al., 2013].

To isolate the contribution of tropical fluxes to atmospheric CO2 variability, we ran an additional GEOS-Chem
simulation for each of the drivers described above, considering only fluxes between 23°N and 23°S. The
CO2 variability explained by tropical NEE fluxes had similar Pearson’s R2 coefficients as the global models
even in the extratropics (Table 3), confirming earlier work showing that tropical ecosystem responses to
climate influence CO2 variability globally [Bousquet et al., 2000; Rayner et al., 2008]. A key mechanism

Table 2. The Contribution of Terrestrial Ecosystem Fluxes to Interannual Variability in Atmospheric CO2 From Single-Variable Global Flux Modelsa

Global 60–90°N 23–60°N 0–23°N 0–23°S 23–60°S 60–90°S

R2 A R2 A R2 A R2 A R2 A R2 A R2 A λ

Temperature 0.46 0.61 0.33 0.57 0.25 0.67 0.47 0.65 0.50 0.58 0.60 0.66 0.63 0.52 0.80 ± 0.07
PDSI 0.42 0.55 0.24 0.40 0.31 0.44 0.39 0.49 0.41 0.63 0.66 0.73 0.48 0.60 �0.47 ± 0.05
GFED3 0.36 0.51 0.24 0.44 0.24 0.44 0.41 0.52 0.32 0.57 0.58 0.62 0.35 0.49 0.40 ± 0.05
ATSR 0.34 0.51 0.24 0.38 0.25 0.43 0.42 0.51 0.35 0.57 0.52 0.64 0.26 0.51 0.37 ± 0.05
Precipitation 0.34 0.47 0.18 0.29 0.26 0.34 0.30 0.43 0.28 0.57 0.48 0.64 0.53 0.54 �0.44 ± 0.05
PE 0.20 0.38 0.11 0.25 0.08 0.30 0.15 0.33 0.19 0.42 0.31 0.53 0.38 0.44 0.67 ± 0.13

aThe Pearson’s R2 coefficient and the amplitude factor (A), calculated as the ratio of the simulated CO2 standard deviation to the observed CO2 standard devia-
tion, are shown for each model. The scale factor (λ) was optimized for each model to minimize the cost function across all six latitude bands. All reported errors
represent standard deviations.

Table 3. The Contribution of Terrestrial Ecosystem Fluxes to Interannual Variability in Atmospheric CO2 From Single-Variable Tropical Flux Models, Similar
to Table 2

Global 60–90°N 23–60°N 0–23°N 0–23°S 23–60°S 60–90°S

R2 A R2 A R2 A R2 A R2 A R2 A R2 A λ

Temperature 0.48 0.57 0.36 0.39 0.34 0.47 0.51 0.57 0.46 0.65 0.64 0.74 0.57 0.58 0.67 ± 0.06
PDSI 0.38 0.50 0.24 0.32 0.30 0.39 0.37 0.48 0.35 0.59 0.60 0.69 0.42 0.54 �0.48 ± 0.06
GFED3 0.27 0.43 0.05 0.27 0.08 0.33 0.28 0.43 0.32 0.54 0.54 0.59 0.36 0.45 0.34 ± 0.05
ATSR 0.26 0.43 0.10 0.28 0.12 0.34 0.29 0.42 0.33 0.51 0.50 0.57 0.24 0.46 0.33 ± 0.06
Precipitation 0.37 0.49 0.23 0.31 0.28 0.37 0.37 0.46 0.29 0.58 0.52 0.67 0.50 0.53 �0.48 ± 0.06
PE 0.33 0.44 0.21 0.23 0.23 0.27 0.30 0.37 0.28 0.54 0.51 0.69 0.45 0.55 0.79 ± 0.11
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explaining this result is the coupling of large net ecosystem carbon flux anomalies to tropical deep
convection that efficiently transports these fluxes poleward in the upper troposphere [Plumb and Mahlman,
1987]. With the exception of fire emissions, regression models derived from extratropical Northern
Hemisphere fluxes had considerably lower performance metrics than their tropical or global counterparts
(Table 4), while extratropical Southern Hemisphere fluxes had almost no impact on CO2 variability
globally (Figure 4). Northern Hemisphere fires explained a much larger fraction of the CO2 variability at
northern middle and high latitudes than tropical or global fires, consistent with past studies documenting
considerable interannual variability in boreal forest fires [Kasischke et al., 2005] and the proximity of
northern surface stations to these sources.

We developed several regression models combining temperature, drought stress, and fire components. For
this analysis, we used PDSI-driven NEE and GFED3 fire emissions since these single-factor regressions
performed better than other models within the same class (Table 2), and we focused on fluxes originating in

Table 4. The Contribution of Terrestrial Ecosystem Fluxes to Interannual Variability in Atmospheric CO2 From Single-Variable Northern Hemisphere Flux Models,
Similar to Table 2

Global 60–90°N 23–60°N 0–23°N 0–23°S 23–60°S 60–90°S

R2 A R2 A R2 A R2 A R2 A R2 A R2 A λ

Temperature 0.06 0.00 0.09 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.11 0.00 0.07 0.00 0.00 ± 0.11
PDSI 0.10 0.24 0.00 0.27 0.01 0.27 0.11 0.27 0.19 0.22 0.26 0.24 0.05 0.19 0.24 ± 0.10
GFED3 0.12 0.26 0.19 0.47 0.23 0.36 0.24 0.26 0.01 0.17 0.01 0.18 0.02 0.14 0.20 ± 0.06
ATSR 0.16 0.34 0.25 0.49 0.25 0.44 0.34 0.32 0.06 0.26 0.04 0.28 0.00 0.22 0.25 ± 0.06
Precipitation 0.20 0.39 0.07 0.49 0.04 0.48 0.27 0.44 0.27 0.31 0.43 0.34 0.15 0.26 0.43 ± 0.10
PE 0.32 0.55 0.05 0.51 0.12 0.57 0.34 0.58 0.42 0.55 0.63 0.60 0.37 0.48 �0.44 ± 0.06

Figure 4. Goodness-of-fit metrics for models of increasing complexity. (top) The Pearson’s R2 coefficient (an indication of
correlation between observed and simulated CO2 variability) and (bottom) the relative amplitude factor (equation (4)) as
the goodness-of-fit metric. The value of each metric is shown for (a and b) global fluxes, (c and d) tropical fluxes, (e and f)
Northern Hemisphere fluxes, (g and h) Southern Hemisphere fluxes, and (i and j) linear combinations of both tropical and
Northern Hemisphere fluxes. For each panel, T represents an NEE model driven solely by temperature, D an NEE model
driven solely by PDSI, and F a model driven solely by GFED fire emissions. Other models are a combination of these indi-
vidual drivers. The relative amplitude is the standard deviation of the simulated CO2 from the model divided by the
standard deviation of observed CO2 and is an indication of the magnitude of variability contributed by each flux model.
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the tropics and Northern Hemisphere. In general, these models were able to explain more of the CO2

variability in the Southern Hemisphere than in the Northern Hemisphere, in part due to greater high
frequency variability in Northern Hemisphere observations (Figures 1 and 4). Given significant correlations
among various drivers (e.g., Figure 3), the scale factors (λ) for the multidriver regression models had
reduced magnitudes compared to the corresponding single-driver regressions since the signal amplitude
was spread across multiple drivers (Table 5).

Table 5. Optimal Coefficients (λ) From Each Component in Multidriver Regression Modelsa

Regression Model Global mean R2 Tropical T Tropical PDSI Tropical GFED
Northern

Hemisphere T
Northern Hemisphere

PDSI
Northern Hemisphere

GFED

Tropical T 0.48 0.67 ± 0.06
Tropical (T, D) 0.49 0.69 ± 0.14 0.02 ± 0.11
Tropical (T, F) 0.51 0.54 ± 0.07 0.14 ± 0.04
Tropical (D, F) 0.48 �0.36 ± 0.05 0.22 ± 0.04
Tropical (T, D, F) 0.52 0.45 ± 0.14 �0.07 ± 0.10 0.15 ± 0.04
NH (T, D) 0.12 0.10 ± 0.11 0.27 ± 0.11
NH (T, F) 0.13 0.03 ± 0.09 0.20 ± 0.06
NH (D, F) 0.16 0.18 ± 0.09 0.17 ± 0.07
NH (T, D, F) 0.17 0.10 ± 0.10 0.21 ± 0.10 0.17 ± 0.06
Best case 0.56 0.43 ± 0.12 �0.16 ± 0.10 0.17 ± 0.04 0.06 ± 0.06 �0.17 ± 0.06 0.13 ± 0.04

aThe best case model includes six driver variables: temperature, PDSI, and GFED3 contributions in both the tropics and NH.
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Figure 5. Contributions of tropical (Tr) and Northern Hemisphere (NH) temperature, drought stress (PDSI), and fire emis-
sions (GFED3) to atmospheric CO2 interannual variability by latitude. The Pearson’s R2 coefficient for each latitude band
is given in the upper right hand corner. The best-case model (Mod) is shown with a grey line and the observations (Obs)
with a black line. The black lines denoting the observations were not identical to the time series shown in Figure 1
because a refinement to the third-order detrending polynomial was fit based on the residual between the observations and
the optimized model. Note also the change in y axis scale between the Northern and Southern Hemispheres.
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For a best-case model estimate,
we optimized λ coefficients for
temperature, drought, and fires from
the Northern Hemisphere and
tropics simultaneously. This model,
comprised of six basis functions,
explained 39 to 57% of the observed
variability in the Northern Hemisphere
and 52 to 79% of the variability in the
Southern Hemisphere (Figure 5).
The combined contributions from fires
and NEE responses to drought stress
accounted for 60–70% of the model
variability in each latitude belt
(Figure 6a). The direct temperature
response of NEE contributed between
30–37% of model variability in the
Northern Hemisphere and 39–40% in
the Southern Hemisphere. Thus,
although direct control of NEE by
temperature was the single largest
driver of observed variability in
atmospheric CO2 (except north of 23°N),
the contribution from temperature
was smaller than the sumof drought and
fire components, contrasting with results
reported by [Wang et al., 2013]. We
tested an alternative version of the best-
case model, substituting precipitation for
PDSI as the climate proxy for drought
stress, and regression results indicated a
further reduction in the contribution
from tropical temperature to CO2

variability (Figure 6b).

Simultaneously accounting for temperature, drought, and fire in the best-casemodel improved both goodness-
of-fit metrics compared to models that assumed only a single driver (Figures 5 and 6, and Table 2). Accounting
for correlations among successive monthly observations, the calculated F statistic justified the additional
degrees of freedom in the best-case model relative to the tropical temperature-only model (p< 0.01).
Moreover, synthetic data generated from the best-case model, as opposed to those from the tropical
temperature-only model, were more consistent with the atmospheric observations (Figure 7). One rationale
that has been given for using the present-day temperature sensitivity of the CO2 growth rate as a constraint on
future model projections is that the apparent temperature sensitivity implicitly captures the covarying
sensitivity to drought and fire; if that were the case, synthetic CO2 generated from a tropical temperature-
only regression model should yield the same sensitivity to drought and fire as atmospheric observations.
However, when the synthetic temperature data were fit serially using single-driver, single-region regression
models, the λ values were significantly different from those determined from atmospheric observations, ruling
out the possibility that a tropical temperature-only model is sufficient to describe the observations.

Fire contributions to CO2 variability in the best-case model varied with latitude. Fires had a greater impact in
the Northern Hemisphere (33–42%) than in the Southern Hemisphere (30–32%), where fire emissions
from boreal forests were large relative to other surface fluxes. In the Northern Hemisphere, the standard
deviation of the fire flux in the best-case model increased to 0.13± 0.04 Pg C yr�1 from the GFED3 baseline of
0.10 Pg C yr�1. In contrast, the standard deviation of the optimized tropical fire emissions was significantly lower
than the standard deviation within the tropics from GFED3 (0.17± 0.04 Pg C yr�1 versus 0.30 Pg C yr�1).
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Figure 6. (a) Relative contributions to the simulated variability in atmo-
spheric CO2 in different latitude bands (x axis) from NEE responses to
temperature and drought stress (PDSI), and fire emissions (GFED3) origi-
nating from the tropics and Northern Hemisphere. The amplitude factor
(A), calculated as the ratio of the standard deviation of the simulated
CO2 relative to the standard deviation of the observations, is shown for
each latitudinal band. (b) Using GPCP precipitation rather than PDSI as a
drought stress metric further diminishes the contribution of tropical tem-
perature to interannual variability in atmospheric CO2.
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The ability to isolate the contributions from
temperature, drought, and fire in the meridional
distribution of CO2 was lost when these data
were aggregated to a global, area-weighted CO2

time series. For the best-case model described
above, the tropical fire contribution decreased by
60% when fit against a globally averaged CO2

timeseries rather than against the meridional
structure of CO2 (Table 6). In contrast, the optimal
flux magnitude for Northern Hemisphere fire
emissions increased several fold (Table 6)—an
unrealistic increase given available constraints
from CH4 and CO. When we averaged the
global mean CO2 data to annual time steps,
the tropical fire emissions component was
further reduced. These exercises demonstrated
that aggregating CO2 data over larger spatial
scales and longer time scales may mask
contributions from fire emissions observed at
higher resolutions.

Estimates of the temperature or drought
sensitivity of NEE at large temporal and spatial
scales are required for ecosystem model
evaluation. Specifically, atmospheric CO2

responses to regionally coherent climate
anomalies provide an opportunity to quantify
biome-level responses that integrate across
regional variations in species composition,
moisture availability, and other important drivers

of ecosystem processes that are difficult to represent in global models. This information is complementary
to canopy-scale responses derived from eddy covariance observations [e.g., Schwalm et al., 2010]. We
determined the large-scale sensitivity of NEE to temperature and drought stress by regressing the land
area-weighted monthly NEE fluxes derived from our optimized models against the land area-weighted
average of monthly temperature or PDSI anomalies (Figure 8). Accounting for fire emissions considerably
reduced the sensitivity of NEE to temperature and drought stress inferred from the atmospheric CO2

observations (Table 7). We found that the temperature sensitivity of tropical NEE was 3.9 ± 0.4 Pg C yr�1 K�1

when no other climate drivers or fire fluxes were taken into consideration. When we applied the λ
value from a model that included global fire emissions, the temperature sensitivity of tropical NEE
decreased by 25% to 2.9 ± 0.4 Pg C yr�1 K�1. The sensitivity of tropical NEE to temperature was further

Table 6. Optimal Scale Factors (λ) and Globally Averaged Amplitude Factors (A) for Tropical or Northern Hemisphere
GFED Fire Emissions Based on Spatial and Temporal Averaging of Monthly Atmospheric CO2 Data

Regional Averaging Global Averaging Global, Yearly Averaging

Model Case λFire A λFire A λFire A

Tropical (T, F) 0.14 0.28 0.06 0.13 0.07 0.14
Tropical (D, F) 0.22 0.42 0.18 0.35 0.18 0.38
Tropical (T, D, F) 0.15 0.29 0.05 0.07 0.03 0.03
Northern (T, F) 0.20 0.90 0.40 0.73 0.69 0.74
Northern (D, F) 0.17 0.53 0.39 0.77 0.64 0.77
Northern (T, D, F) 0.17 0.41 0.35 0.41 0.62 0.42
Bestcase, tropical F 0.17 0.19 0.06 0.06 0.00 0.00
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Figure 7. Scale factors for single drivers when fit to observa-
tions versus when fit to synthetic data derived from tropical
temperature-only and best-case regression models. We
generated 1000 realizations of synthetic CO2 using parameter
values drawn from the uncertainty distributions of the
tropical temperature-only and the best-case regression
models, and fit single-driver temperature, drought, and fire
response functions to the synthetic data. The individual
λ values fit to the synthetic data derived from the best-case
model (circles) were consistent with those fit to the observa-
tions, while the Northern Hemisphere λ values and tropical
fire λ value fit to the temperature-only synthetic data deviated
significantly (triangles), ruling out the possibility that the
tropical temperature-only model was consistent with the
observations (p < 10�3).
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reduced to 2.6 ± 0.7 Pg C yr�1 K�1 when we
considered all scale factors from the best-case
model (Figure 9). The NEE sensitivity to
tropical drought stress likewise decreased by
30%, from �1.1 ± 0.1 Pg C yr�1 per unit of
PDSI when no other drivers were considered to
�0.8 ± 0.1 Pg C yr�1 per unit of PDSI when
we accounted for global fire emissions (Table 7).

4. Discussion

Our results suggest that the correlation between
tropical temperature and the CO2 growth rate
is caused by an assortment of covarying
processes, including NEE responses to
temperature and drought stress as well as
fire emissions in tropical and boreal forest
ecosystems. We found that the combined
influence of the response of NEE to drought and
fire emissions accounted for more of the
variability than direct temperature responses of
NEE when these drivers were considered
simultaneously. These findings have several
implications for studies that use contemporary
CO2 variability to constrain ESMs.

First, fire, temperature, and drought responses
within ESMs need to be separately and

explicitly considered during model evaluation. Cox et al. [2013] developed a novel approach for constraining
the long-term sensitivity of tropical carbon stocks to warming (γ) in ESMs using contemporary atmospheric
CO2 and temperature observations. The authors showed that a relationship existed across different
models between γ and the interannual CO2 growth rate sensitivity to temperature. In a second step, Cox et al.
used observations from the past several decades to show that manymodels overestimated the observed CO2

growth rate sensitivity to temperature and thus had γ values that were likely excessive. Several models,
however, were near or within the range of the observations. Since many of the models in the ensemble did
not have explicit representation of fire processes, removing fire contributions from the observed CO2

growth ratemay enable amore direct comparison with simulated NEE responses to tropical temperature. Our
results suggest that after removing fire contributions, the component of the observed CO2 growth rate
variability attributable to tropical NEE would be reduced by approximately 25% (e.g., Table 7), bringing a
different set of models into closer agreement with the observed range. Although a more rigorous evaluation
is needed, this preliminary estimate strengthens conclusions by Cox et al. that earlier models may have
had unrealistically large (negative) values of γ—at least for the nonfire component of the tropical net
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Figure 8. Land-weighted temperature, precipitation, and PDSI
anomalies for the tropics and Northern Hemisphere.

Table 7. Sensitivity of NEE to Temperature and Drought Stress (Normalized to a 1 Unit Increase in the Palmer Drought
Severity Index) When NEE Responses Were Considered Alone or in Conjunction With Fire Emissionsa

Flux Original Accounting for Fire Significance of F Test

NEE Sensitivity to Temperature (Pg C yr�1 K�1)
Tropical NEE 3.9 ± 0.4 2.9 ± 0.4 p< 0.01
Global NEE 3.3 ± 0.3 2.4 ± 0.3 p< 0.01

NEE Sensitivity to Drought (PDSI) (Pg C yr�1 per unit of PDSI)
Tropical NEE �1.1 ± 0.1 �0.8 ± 0.1 p< 0.001
Global NEE �1.6 ± 0.2 �1.1 ± 0.2 p< 0.001

aAn F test was used to compare model pairs with and without fire.
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ecosystem carbon balance. It is important
to recognize that while ESM agreement with
present-day CO2 variability and its multiple drivers
is necessary to have confidence in climate
predictions, it is not sufficient because, on longer
time scales, climate changes would be expected to
modify processes that are likely of second-order
importance to the interannual variations we
analyze here, including plant competition and
tree mortality.

Second, estimates of the fire contribution to CO2

variability change significantly with temporal
and spatial averaging. The standard deviation
of optimized tropical fire emissions decreased by
60–70% when CO2 variability was averaged
globally and by up to 80% when variability was
determined from annual, rather than monthly, CO2

time series. This result underscores the need to
consider the full spatial and temporal distribution
of atmospheric CO2 and to use a consistent
transport-modeling framework to infer the
sensitivities to temperature and drought stress in
both models and observations. The extension

of column CO2 time series from GOSAT and forthcoming observations from NASA’s Orbiting Carbon
Observatory (OCO-2, launched in 2014) may enable future refinements in the partitioning among
temperature, drought, and fire contributions to CO2 variability.

Fire management is one possible lever for reducing CO2 emissions as the climate warms. In the tropics,
where fires are often linked with forest and peatland clearing, different management practices may lead to
greater long-term carbon storage. Optimizing long-term development strategies [Nepstad et al., 1999] or
more effective use of fire forecasting tools [Chen et al., 2011], for example, may ultimately enable managers to
reduce carbon losses. Accurate attribution of interannual variability of CO2 to fire and NEE responses to
drought and temperature also may improve our understanding of drivers of long-term changes in this
variability [Wang et al., 2014] and reveal opportunities for decoupling carbon fluxes from drought stress as
climate changes.

Analysis of the climate drivers of CO2 variability at seasonal, interannual, and decadal time scales may
ultimately provide a path toward improved climate predictability in ESMs. We stress that capturing
variability at these time scales does not ensure accurate climate predictions at longer time scales, but only
improves our confidence that important mechanisms are adequately represented. The linkages among
temperature, drought, and fire contributions in this study underscore their similar responses to climate
variability and the importance of balanced investments in field and modeling research programs that
improve our understanding of all of these interactions and their representation in ESMs.
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