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Abstract. Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire
dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and
their impact on atmospheric composition, long-term fire records are needed that fuse information from different
satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database
(GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the
Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previ-
ous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates
with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field obser-
vations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes,
and (4) fire severity estimates that better represent continental differences in burning processes across boreal
regions of North America and Eurasia. The new version has a higher spatial resolution (0.25◦) and uses a dif-
ferent set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal
forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were
2.2× 1015 grams of carbon per year (Pg C yr−1) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1)
and minimum in 2013 (1.8 Pg C yr−1). These estimates were 11 % higher than our previous estimates (GFED3)
during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in
burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption
(−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and
aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emis-
sion factors. If small fire burned area was excluded (GFED4 without the “s” for small fires), average emissions
were 1.5 Pg C yr−1. The addition of small fires had the largest impact on emissions in temperate North America,
Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving
these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our
revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better
understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are
available from http://www.globalfiredata.org.

Published by Copernicus Publications.
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1 Introduction

Fires have occurred naturally since the rise of vascular plants
on land over 400 million years ago (Scott and Glasspool,
2006), shaping biomes and influencing climate through mod-
ulation of the carbon cycle and emissions of greenhouse
gases and aerosols (Edwards et al., 2010; Langmann et
al., 2009; van Langevelde et al., 2003). During the An-
thropocene, humans have become an increasingly important
driver of fire occurrence (Bowman et al., 2011). Human ac-
tivity has enhanced fire activity in locations such as defor-
estation zones, while fire suppression and conversion of fire-
prone landscapes such as savannas to agriculture in Africa,
or of fire-maintained open lands to closed-canopy forests in
the eastern US has generally decreased fire activity (Andela
and van der Werf, 2014; Bowman et al., 2009; Nowacki and
Abrams, 2008). To study how climate influences fires at the
global scale and, in turn, how fires influence the carbon cy-
cle, air quality, and climate we have developed the Global
Fire Emissions Database (GFED).

The scientific community has used past releases of GFED
for over a decade. GFED has been used by atmospheric
and biogeochemical modeling groups as an input dataset to
study the impact of fires on biogeochemical cycles (Chen et
al., 2010; Schwietzke et al., 2016), atmospheric chemistry
(Aouizerats et al., 2015; Castellanos et al., 2014), and hu-
man health (Johnston et al., 2012; Marlier et al., 2013), in
assessment reports of the Intergovernmental Panel on Cli-
mate Change (IPCC) to estimate the role of fire and de-
forestation in biogeochemical cycles (Ciais et al., 2013),
in the National Oceanic and Atmospheric Administration
(NOAA’s) CarbonTracker system (Peters et al., 2007), and
in annual updates of the Global Carbon Project (Le Queré
et al., 2015). GFED also serves as a benchmark for optimiz-
ing fire modules in dynamic global vegetation and Earth sys-
tem models (Hantson et al., 2016), and for fire emissions es-
timates derived from fire radiative power (FRP), including
the Global Fire Assimilation System (Kaiser et al., 2012).
Finally, burned area from GFED has provided a means for
building early warning systems of fire season severity (Chen
et al., 2016).

The first version of GFED was released in 2004 and
has since undergone several revisions as improved burned
area estimates became available. GFED2 was released after
Giglio et al. (2006) improved on the mapping of burned area
from active fire data. GFED3 was released when this con-
version was no longer necessary because almost all burned
area in the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) era had been mapped (Giglio et al., 2010),
and the current version follows further improvements in the
burned area algorithm (Giglio et al., 2013). Satellite burned
area is the most important input dataset regulating the spa-
tial and temporal pattern of emissions following the Seiler

and Crutzen (1980) approach, and is complemented in GFED
by a biogeochemical modeling framework that provides esti-
mates of biomass in various carbon “pools” including leaves,
grasses, stems, coarse woody debris, and litter. These pools
are combusted to different degrees during a fire depending on
pool-specific parameters and environmental conditions that
influence fuel moisture and the simulated burn depth in or-
ganic soils of boreal forests and peatlands.

Over the past decade, a parallel line of research has made
considerable progress in estimating emissions using satel-
lite observations of FRP. When continuous observations are
available or the FRP diurnal cycle can be modeled, FRP can
be integrated over time, yielding fire radiative energy (FRE).
FRE is directly related to fire emissions (Wooster, 2002),
and approaches using FRP observations can provide emis-
sions estimates in near-real time (Darmenov and da Silva,
2015; Kaiser et al., 2012). Despite progress (Ichoku and El-
lison, 2014; Schroeder et al., 2014a), there is still substan-
tial uncertainty and some of these FRE approaches apply
a scaling factor to match GFED. Comparisons between the
“classical” burned area approach and the FRP approach, or
approaches based on active fire detections in general, have
indicated there is considerable variability in the amount of
burned area associated with an individual active fire detec-
tion, and thus the two approaches do not always align (Giglio
et al., 2006; Randerson et al., 2012). In general, direct map-
ping of burned area excels when fires are large, but has diffi-
culty in detecting smaller fires, for example, in croplands and
in other areas where many fires have a size below the 21 ha of
an individual 500 m MODIS pixel. Combining both burned
area and active fire data, Randerson et al. (2012) provided ev-
idence that the total area burned by these relatively small fires
could be substantial at the global scale. Therefore, emission
estimates based solely on active fires, including the Fire IN-
ventory from NCAR (Wiedinmyer et al., 2011), may better
capture spatial and temporal variability in regions with many
small fires than emission estimates based solely on burned
area (Reddington et al., 2016). However, approaches based
solely on active fires often do not account for spatial and tem-
poral variability in the amount of burned area per active fire
detection or variability in fuel consumption within biomes.

In this paper we describe the emissions estimates asso-
ciated with the GFED4 burned area product from Giglio et
al. (2013), with or without additional burned area from small
fires based on a revised version of the Randerson et al. (2012)
small-fire estimation approach. The main focus of our anal-
ysis will be on the model version that includes small fires
(GFED4s), while the emissions estimates based on burned
area without small fires will be referred to as GFED4. We
also used a recent meta-analysis (van Leeuwen et al., 2014)
to constrain our modeled estimates of fuel consumption. Fuel
consumption is the amount of biomass, coarse and fine lit-
ter, and soil organic matter consumed per unit area burned
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and is the product of fuel load and combustion completeness.
Besides these two main improvements over earlier versions,
we made a number of additional modifications including up-
dated input datasets, the use of satellite-derived estimates of
parameters governing fuel consumption and tree mortality in
the boreal region (Rogers et al., 2015), and application of a
new emission factor methodology that separates temperate
and boreal forest ecosystems (Akagi et al., 2011). In Sect. 2
we provide more detail on these input datasets, followed by a
description of the modeling framework in Sect. 3. Results are
given in Sect. 4 followed by a discussion in Sect. 5 that in-
cludes a description of the main differences with GFED3 and
an assessment of the primary sources of uncertainty in esti-
mating fire emissions. In the conclusions (Sect. 6) we sum-
marize the main points of our analysis and describe several
important directions for future work.

2 Input datasets

Our version of the Carnegie–Ames–Stanford Approach
(CASA) model described in Sect. 3 requires input datasets
on vegetation characteristics, meteorology, and fire param-
eters. Most of these datasets are somewhat different from
those used in previous versions of GFED, in part from a need
for shorter latency in our updates. We re-gridded all of the
input datasets to 0.25◦ spatial resolution and a monthly tem-
poral resolution. We took additional steps to create estimates
of fire dynamics on daily and 3-hourly time steps.

2.1 Vegetation characteristics

In CASA, the fraction of absorbed photosynthetically active
radiation (fAPAR) is used to estimate net primary production
(NPP), fractional tree cover (FTC) is used in the allocation
of NPP between living carbon pools, and land cover (LC)
is used to set turnover rates for stems and leaves, applying
emission factors, and for categorizing fire carbon emissions
into various fire types.

We calculated fAPAR based on the Global Inventory Mod-
eling and Mapping Studies (GIMMS) normalized difference
vegetation index (NDVI) version 3g (Pinzon and Tucker,
2014) and relations established by Los et al. (2000). This
dataset is derived from the Advanced Very High Resolution
Radiometer (AVHRR) sensor flying on board several satel-
lites. We capped fAPAR at 0.95, corresponding to an NDVI
value of 0.9. Data were not available for several remote is-
lands, including Hawaii and Fiji, and we do not report emis-
sions for these locations.

FTC was derived by aggregating the annual MODIS
MOD44B vegetation continuous fields (250 m, V051;
Hansen et al., 2005) to 0.25◦. In order to provide consis-
tency over the full time period, we used the last year available
(2013) and increased FTC in prior years using the fire-driven
deforestation rates. These fire-driven deforestation rates were
based on the amount of burned area within tropical forests at

an annual time step. We used land cover maps from the an-
nual MODIS MCD12C1 land cover type product and Univer-
sity of Maryland (UMD) classification scheme (Friedl et al.,
2010). The climate modeling grid (CMG, 0.05◦) dataset was
resampled to 0.25◦ based on the most abundant land cover
type. This dataset was available for 2001–2012; data from
2001 were applied to earlier years in the time series, and 2012
land cover data were used for years after 2012.

2.2 Meteorological datasets

We now use air temperature (t2m), soil moisture (swvl), and
solar radiation (ssrd) from the ERA-Interim dataset (Dee et
al., 2011) produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF). We calculated the
monthly mean for all datasets and regridded the 0.75◦ dataset
to our 0.25◦ resolution without interpolation.

These datasets are somewhat different from inputs for
earlier GFED versions but are now internally consis-
tent. Interannual and seasonal variability was relatively
similar to datasets previously used in GFED, and these
variations have the largest impact on our calculations.
The use of soil moisture is new; previously, we used a
bucket model based on rainfall and potential evapora-
tion to calculate the wetness of soils, a key input dataset
for calculating heterotrophic respiration (Rh) rates and
combustion completeness (see Sect. 3). Soil moisture is
now transformed to a soil moisture index (SMI) based on
soil-type-specific permanent wilting point (PWP) and field
capacity (FC) values as described in http://www.ecmwf.
int/en/forecasts/documentation-and-support/evolution-ifs/
cycles/change-soil-hydrology-scheme-ifs-cycle and is
capped at 1. This was done for all four different soil layers
(0–7, 8–28, 29–100, 101–255 cm). The SMI for the 0–7 cm
layer replaced the scalar used previously for combustion
completeness. The average SMI of the top two layers was
used to down-regulate NPP in herbaceous vegetation in
the light use efficiency model when moisture was limiting,
whereas the average of the top four layers was used for
NPP in woody vegetation. The average SMI for the upper
two layers was also used to represent the influence of soil
moisture on the abiotic scalar regulating rates of Rh. Finally,
the average SMI of all layers was used in the allocation of
assimilated carbon to above- and belowground pools (see
Sect. 3).

2.3 Fire processes

We derived burned area (both mapped burned area and ac-
tive fire detections scaled to burned area) and metrics that
can be used to assess fire-induced tree mortality and combus-
tion completeness from satellite. Our burned area time series
is based on MODIS data for the August 2000 onwards pe-
riod (the “MODIS era”) and based on other sensors before
that period. In Sect. 2.3.1 we briefly describe the MODIS
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burned area data for which a more detailed description is de-
scribed in Giglio et al. (2013). In Sect. 2.3.2 we then explain
how the small fire burned area estimates for the MODIS era
were derived based on Randerson et al. (2012). This is the
GFED4s burned area time series and complemented with
other sensors to compute the full 1997–2016 time period
dataset (Sect. 2.3.3).

2.3.1 Burned area from MODIS

For the MODIS era we used the MODIS Collection 5.1
MCD64A1 burned area product (Giglio et al., 2013).
Compared with Collection 5 and earlier versions of the
MCD64A1, the Collection 5.1 product reduces the uninten-
tional removal of small burns and eliminates some systematic
omission errors (Giglio et al., 2013). The MCD64A1 prod-
uct maps daily burned area at 500 m spatial resolution; these
data are then aggregated to a 0.25◦ grid (both monthly and
daily) to produce the MODIS-era GFED4 burned area prod-
uct (Fig. 1a).

2.3.2 Small fire burned area during the MODIS era

In the MODIS era, we combined 500 m burned area (see
above), 1 km thermal anomalies (active fires) from Terra and
Aqua MODIS, and 500 m surface reflectance observations to
statistically estimate burned area associated with small fires,
BAsf, in each 0.25◦ grid cell (i), month (t), and aggregated
vegetation type (v):

BAsf (i, t,v)= FCout (i, t,v)×αr, s, v, y × γr, s, v, y, (1)

where FCout is the number of active fire pixels outside of
the perimeter of the MCD64A1 burned area, α is a ratio of
burned area to active fires within MCD64A1 burned areas,
and γ is a correction factor derived by comparing difference
normalized burned area (dNBR) of active fires observed out-
side (dNBRout) and inside (dNBRin) of MCD64A1 burned
areas with unburned control areas (dNBRcontrol; see Eq. 4 of
Randerson et al., 2012). α and γ scalars were estimated each
year (y), as a function of region (r), seasonal interval (s),
and aggregated vegetation type (v). Our method was similar
to that described in Randerson et al. (2012), but with several
important modifications to each of the three factors on the
right-hand side of Eq. (1) as described below.

First, we used the MCD64A1 product from Collection
5.1, replacing Collection 5 that was used in Randerson
et al. (2012). Second, instead of using a single source of
level 3 composited thermal anomaly/fire product from Terra
(MOD14A1), here we used individual active fire detec-
tions from both Terra and Aqua. Third, to improve geolo-
cation accuracies, we used the MODIS fire location product
(MCD14ML) instead of the gridded composite fire product
(MOD14A1). To further reduce geolocation uncertainties,
we only retained active fire detections with small or moderate

Figure 1. Average burned area over 2003–2016 from (a) MODIS
surface reflectance imagery (MCD64A1) and (b) small fire burned
area. Panel (c) shows the small fire percentage of total burned area.

scan angles (equal to or less than 0.5 radians). This thresh-
old was somewhat arbitrary and future research is required
to identify how a balance between sample size and area of
view is best achieved. Even with the above adjustments to
improve georegistration, some remaining resampling error
was introduced in the process of projecting the variable-
size MODIS fire pixels onto the 500 m sinusoidal grid on
which the MCD64A1 burned area product is generated. To
partially correct this known bias, we applied region-specific
factors ranging from 0.88 in Africa north of the Equator to
1.12 for temperate and boreal Asia. These correction factors,
which were derived using a rigorous model of the sample-
dependent MODIS pixel shape and size, partially compen-
sated for the simplified, fixed 1 km radius initially used to
determine whether an active fire pixel was co-located (inside)
or outside of the MCD64A1 burn area pixels. Finally, to esti-
mate dNBR for active fires inside of MCD64A1 burned area,
we only used active fire detections for which each of the four
overlapping 500 m pixels were classified as burned. This was
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Figure 2. The distribution of difference normalized burn ra-
tio (dNBR) for active fires detected within burned areas from
MCD64A1 (red), outside of burned areas (orange), and for control
areas (blue) within Northern Hemisphere Africa (NHAF) and Cen-
tral Asia (CEAS). The distributions, generated using observations in
2001–2012, were constructed during the peak fire month for each
region. The improved approach (see Sect. 2.3.2 for details) com-
pressed the distributions in unburned control areas and increased
the separation between the three categories.

a stricter criterion than in Randerson et al. (2012) that in-
creases dNBRin and its separation from dNBRout and other
areas used as controls (Fig. 2).

It was not possible to apply the same constraint in the cal-
culation of dNBRout, so this adjustment usually had the effect
of lowering γ . We note that dNBRout in particular is strongly
affected by resampling error; thus, the individual γ correc-
tion factors are in turn also influenced by resampling error.
The net effect is to limit the range of values that may be at-
tained by γ , in a sense leaving an “imprint” of resampling
error on the resulting small fire burned area estimates. This
imprint is an unavoidable outcome of using relatively coarse
1 km and 500 m gridded time series data to track small, sub-
pixel fires. At the same time, we raised the filtering standard
for control pixels (Eq. 4 of Randerson et al., 2012) so that
pixels within a 1 km buffer area of active fire detections by
either Terra or Aqua MODIS were excluded in the calcula-
tion of dNBR for non-burning areas (dNBRcontrol). During
the regional aggregation of dNBR, we excluded 500 m pix-
els that were marked as “water” by MODIS land cover type
product (MCD12Q1).

During the time both Terra and Aqua fire detections
were available (January 2003–December 2016), we calcu-
lated BAsf separately for Terra (MOD) and Aqua (MYD).
BAsf was then estimated as the arithmetic mean of the two
estimates. A climatological ratio of BAsf−MYD /BAsf−MOD
was used to estimate BAsf−MYD during periods when Aqua
MODIS observations were not available (August 2000–

Figure 3. Map of the 14 regions used in this study, after Giglio et
al. (2006) and van der Werf et al. (2006).

December 2002). The final GFED4s burned area during the
MODIS era was the sum of GFED4 burned area (Sect. 2.3.1;
Fig. 1a) and burned area from small fires (BAsf, Fig. 1b).
As expected, burned area from small fires is more preva-
lent in areas with extensive agriculture and in other human-
dominated landscapes (Fig. 1c).

2.3.3 Estimating burned area prior to the MODIS era
(1997–2000) for GFED4s

For the pre-MODIS era, we used monthly active fire data
from the Visible and Infrared Scanner (VIRS) aboard the
Tropical Rainfall Measuring Mission (TRMM) or the Along
Track Scanning Radiometers (ATSR) on board multiple plat-
forms to estimate burned area. Two steps of optimization
were used to derive total burned area, starting with the
GFED4s product described above. The first step was to de-
velop a relationship between aggregated active fires (from
VIRS or ATSR) and burned area during the MODIS era in
each GFED region, with the aim of using this relationship to
estimate regional burned area during 1997–2000. The second
step involved distributing the aggregated burned area within
each region to individual 0.25◦ grid cells.

To calculate the regional sum of BA during the pre-
MODIS era, we first performed regression analyses be-
tween ATSR or VIRS active fires and the regional sum of
GFED4s burned area during the MODIS era. We developed
linear regression models for each GFED region (Fig. 3),
for each month, and for each of the five aggregated veg-
etation classes (see Randerson et al., 2012, for a descrip-
tion of the vegetation classes). When ATSR and VIRS active
fire data were both available (January 1998–July 2000), the
highest performing regression from these two datasets was
used to estimate the burned area in each region. Among the
14 continental-scale regions, we used VIRS data in Africa,
Southeast Asia, Equatorial Asia, and Australia and ATSR

www.earth-syst-sci-data.net/9/697/2017/ Earth Syst. Sci. Data, 9, 697–720, 2017
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data in all other regions (Fig. 4). Prior to 1998, when VIRS
data were not available, regressions based on ATSR were
used. If the ATSR or VIRS active fires for any given month
were outside the dynamic range of active fires during the
MODIS era, we instead used linear regression derived from
all of the monthly data during the MODIS era for that region.

After quantifying the sum of burned area within each re-
gion, we distributed it among 0.25◦ grid cells using the fol-
lowing approach. While active fires from ATSR or VIRS pro-
vide some indication about the temporal dynamics of fire in a
region, the active fire approach tends to underestimate burn-
ing in savannas and other areas with herbaceous fuels. To as-
sess how well active fires captured regional spatial patterns,
we estimated the spatial correlation between active fires
and burned area in each GFED region during the MODIS
era. Higher correlations from these analyses indicated better
agreement between the spatial distribution of ATSR/VIRS
active fires and GFED4s burned area. Since we found the
correlation coefficients varied seasonally, a mean monthly
(m) set of spatial correlation coefficients (SC) was derived
to determine the level of representation of burned area by
ATSR/VIRS active fires. The spatial distribution function of
burning was based on a linear combination of climatological
distribution of burned area (cl) and the distribution of active
fires (FC):

BApre−MODIS (i, t)= BArs (r, t)× [SDFFC (r, i, t)×SC(r,m)
+SDFcl (r, i, t)× (1−SC(r,m)) ] , (2)

where SDFFC and SDFcl are unitless spatial distribution
functions that each sum to 1 in each GFED region and were
derived from active fire detections or the monthly climatol-
ogy of burned area during the MODIS era from GFED4s, and
BArs is the regional (r) sum of burned area for that month
and region derived from the regressions between GFED4s
and ATSR or VIRS active fires described above. In temper-
ate and high-latitude regions, where the spatial correlation
between active fires and burned area is relatively high, the
equation primarily uses information from the pre-MODIS ac-
tive fires to assign the spatial distribution of burned area. In
regions where the spatial correlation between active fires and
burned area is relatively low, the equation relies more on the
climatological burned area pattern from the MODIS era. For
consistency with the previous step, the source of the active
fires for generating the SDF was the same as active fires used
to generate the regional sum of burned area in each region.
The contribution of ATSR, VIRS, MCD64A1, and BAsf to
the total burned area is shown in Fig. 4 for the GFED4s time
series.

2.3.4 Combustion completeness and fire-induced
mortality in boreal forests

Despite relatively similar environmental conditions and veg-
etation attributes, the boreal regions in North America and

Eurasia exhibit significantly different patterns of fire sever-
ity (Wooster and Zhang, 2004). This was shown to primarily
be a function of divergent plant traits for the dominant tree
species in each continent (Rogers et al., 2015). Species in
North America tend to promote crown fires with higher lev-
els of combustion completeness of the canopy and tree mor-
tality compared to lower-severity surface fires in Eurasia. As
with other global fire models, GFED3 did not capture these
differences due to biome-wide parameterizations.

To address the large-scale differences in boreal fire effects,
we integrated satellite-based metrics of severity from Rogers
et al. (2015) including immediate tree mortality and an index
of vegetation destruction. These were initially calculated at
1 km and 500 m resolutions, respectively, and aggregated to
1◦ , but here rescaled to our 0.25◦ grid without interpolation.
Vegetation destruction was derived from three MODIS-based
metrics that provide information on immediate fire-induced
losses of green vegetation, reduction in canopy and soil wa-
ter, and landscape charring. These included dNBR, decreases
in NDVI, and increases in summer land surface temperature
(LST). The original vegetation destruction product used LST
from Aqua and was available from 2003 to 2012. We ex-
tended it here to 2001 and 2002 using multiple linear regres-
sion relationships based on Terra LST, dNBR, and changes in
NDVI at 1◦ (r2

= 0.95 for North America, 0.96 for northwest
Eurasia, 0.95 for northeast Eurasia, and 0.91 for southern
Eurasia). Immediate tree mortality was based on decreases in
tree cover and increases in spring albedo 1 year after a fire,
and was provided for fires between 2001 and 2009. For both
products, grid-cell-specific averages were used in years not
covered, and grid cells without valid values were assigned
regional burned-area-weighted means. On average, vegeta-
tion destruction was 36 % lower and fire-induced tree mor-
tality was 42 % lower in boreal Eurasia compared to boreal
North America. More details on model integration are given
in Sect. 3.1, and more information on these products can be
found in Rogers et al. (2015).

3 Modeling framework and modifications

GFED is based on the CASA model, which was developed in
the early 1990s to simulate the terrestrial carbon cycle using
satellite data (Potter et al., 1993; Field et al., 1995; Rander-
son et al., 1996). In previous work we adjusted the model
to account for fires (van der Werf et al., 2003, 2004); fur-
ther revisions were implemented in GFED2 (van der Werf et
al., 2006) and GFED3, including modifications to estimate
the contribution of different fire categories including agri-
cultural waste burning, boreal forest fires, deforestation fires,
peatland fires, and savanna fires (van der Werf et al., 2010).
Below we describe the model in general (Sect. 3.1), followed
by a more detailed explanation of the changes we made in
this version (Sect. 3.2–3.5).

Earth Syst. Sci. Data, 9, 697–720, 2017 www.earth-syst-sci-data.net/9/697/2017/



G. R. van der Werf et al.: Global fire emissions estimates during 1997–2016 703

ATSR VIRS MCD64A1 Small fire

1997 2002 2007 2012 2017
0

1

2

3
Boreal North America

1997 2002 2007 2012 2017
0.0

0.5

1.0

Temperate North America

1997 2002 2007 2012 2017
0

2

4

6
Central America

1997 2002 2007 2012 2017
0

1

2
Northern Hemisphere South America

1997 2002 2007 2012 2017
0
5

10
15
20 Southern Hemisphere South America

1997 2002 2007 2012 2017
0.0

0.5

1.0
Europe

1997 2002 2007 2012 2017
0.0

0.5

1.0

B
u
rn

e
d
 a

re
a
 (

M
h
a
 m

o
n
th

−
1
)

Middle East

1997 2002 2007 2012 2017
0

20

40

60
Northern Hemisphere Africa

1997 2002 2007 2012 2017
0

20

40

60 Southern Hemisphere Africa

1997 2002 2007 2012 2017
0

5

10
Boreal Asia

1997 2002 2007 2012 2017
0

5

10

Central Asia

1997 2002 2007 2012 2017
0
2
4
6
8 Southeast Asia

1997 2002 2007 2012 2017

Year

0

2

4
Equatorial Asia

1997 2002 2007 2012 2017

Year

0

10

20

30 Australia and New Zealand

Figure 4. Regional time series (1997–2016) of GFED4s monthly burned area. The different colors indicate the contribution from each of the
different data sources and methodologies (ATSR, TRMM-VIRS, 500 m MCD64A1, and small fires) used to produce the entire dataset.

3.1 CASA-GFED framework

When CASA was developed it computed carbon fluxes as the
difference between NPP and Rh. Both are still calculated for
each month and each 0.25◦ grid cell. NPP is based on a light
use efficiency model (Field et al., 1995) and is distributed
over various live biomass “pools” (leaves, stems, roots) ac-
cording to satellite-derived fractional tree cover maps. In
forests we allocate NPP to all three live biomass pools, and
in grasslands to leaves and roots, accounting for variability in
allocation due to gradients in mean annual precipitation as in
GFED3. The carbon in these pools is subsequently delivered

to nine litter pools at the surface and in the soil with turnover
rates set for each pool depending on moisture conditions and
temperature.

The turnover rates of the wood pool in GFED4 (the mod-
eling framework used to derive both GFED4 and GFED4s
emissions) were adjusted at the biome level to match ob-
served aboveground biomass (Avitabile et al., 2016; Santoro
et al., 2015). Wood turnover now varies between 40 years
for deciduous broadleaf forest and 65 years for deciduous
needleleaf forest, with turnover times for evergreen forest in
between those values: 52 years for evergreen needleleaf and
55 for evergreen broadleaf (Fig. 5). Similarly, turnover times
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Figure 5. Comparison of modeled standing biomass with the com-
pilation from Avitabile et al. (2016) and Santoro et al. (2015). Bins
with fewer than 100 grid cells are excluded.

of slowly decomposing soil pools were adjusted in GFED4
to better match measured values reported for 0–30 and 30–
100 cm (Batjes, 2016).

In GFED1 we added fire, herbivory, and grazing as addi-
tional carbon loss pathways besides Rh. Fires transfer car-
bon to the atmosphere and between the different pools de-
pending on the burned fraction of the grid cell, combustion
completeness, fire-induced mortality rates, and information
on whether belowground carbon pools are susceptible to fire
or not.

Combustion completeness (CC) is treated similarly in
GFED4 as in our previous work with set minimum and max-
imum values; see Table 1 in van der Werf et al. (2010). We
scaled CC using the soil moisture index (SMI) of the top 7 cm
such that the 5th and 95th percentiles corresponded with the
minimum and maximum values. Fire-induced tree mortality
was set to 2 % for low tree cover regions (mainly savannas
and agriculture) and 50 % for forests in general but modified
in tropical forests based on fire persistence as in GFED3, and
in boreal regions according to satellite derived proxy datasets
(Sect. 2.3.4). More specifically, in boreal forests we used
the satellite-derived instantaneous tree mortality to represent
fire-induced tree mortality. In addition, we did not use the
CC scaling by SMI for the aboveground wood in the boreal
region but used the satellite-derived vegetation destruction
scalar for this. The combustion completeness of the wood
pool ranged between the set minimum and maximum values
(0.2 and 0.4, respectively), and linearly depended on the veg-
etation destruction scalar instead of SMI.

3.2 Modifying the burned fraction to account for
sub-grid-scale heterogeneity in fuels

In our previous model setup, fires lowered the fuel load in
each grid cell depending on burned area, combustion com-
pleteness, and fire-induced mortality rates. This was done

uniformly in the grid cell, not accounting for the fact that fires
only lower fuel in the fraction of the grid cell that actually
burned. This may have led to an underestimation of emis-
sions in frequently burning regions, especially towards the
end of the fire season. For example, in a grassland grid cell
that burns in two consecutive months, each with 0.5 burned
fraction, modeled fuel loads in the second month are half
those of the first month if combustion completeness is set
at 100 % (Fig. 6). In reality, the fuel load in that grid cell in
the second month should be similar to that in the first month
for the part that had not burned, and depleted for the part that
had burned. To compensate for this effect we now calculate
the modified burned fraction of the grid cell as

MBF(it)=
BA(i, t)
A(i)

/(
1−

∑t−1
t−4BA(i, t)
A(i)

)
, (3)

where MBF is the modified fraction of the grid cell that
burns, BA is the burned area, andA is the area of the grid cell
at location (i). In our hypothetical example from above MBF
now becomes 1 in the second month according to Eq. (3),
thus generating similar emissions in the 2 months that each
burn the same area (Fig. 6). When cumulative burned area
over a fire season exceeds the grid cell area this approach
yields negative values towards the end of the season; if this
occurs these values are replaced by the burned area divided
by the grid cell area. Because we only take into account the
burned area from the actual month and the three preceding
months, grid cells with two burning seasons are probably not
impacted because they are usually separated in time by more
than 3–4 months. Our approach does not influence the burned
area datasets but only the way it is used in the conversion of
burned area to emissions.

3.3 Fuel consumption optimization

Emissions are derived from the multiplication of burned area
and fuel consumption per unit burned area, the latter being
the product of fuel loads per unit area and combustion com-
pleteness. Van Leeuwen et al. (2014) summarized the peer-
reviewed literature on fuel consumption rates consisting of
76 studies and covering 121 unique measurement locations.
In addition to the fuel consumption measurement, we also in-
cluded the fuel load measurements mostly in savannas from
Scholes et al. (2011) and assumed a combustion complete-
ness of 0.9 for these fuel measurements to calculate fuel con-
sumption. This latter set of 95 measurements were mostly
confined to South Africa, Botswana, and Zambia.

We used these two compilations to adjust the turnover
rates of herbaceous leaf and surface litter pools where the
largest discrepancies between the model and measurements
were found. Uncertainties in the comparison stem from com-
paring different time period (most measurements were made
before our study period) and from comparing local measure-
ments with model estimates for 0.25◦ grid cells. Fuel con-
sumption rates are highly variable, not only between biomes
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Figure 6. Burned area, fuel load, and emissions for a hypothetical grid cell where 50 % of the area burns in month 2 and 50 % in month
3, and assuming a combustion completeness of 100 %. “Previous” refers to our previous work in GFED3 and before where no adjustments
were made in the conversion of burned area to the fraction of fuel load that is combusted; “modified” refers to the current approach (GFED4
and GFED4s), where we treat the burned fraction as the fraction of the total remaining fuel in the grid cell that is combusted using Eq. (3).

Table 1. Emission factors for different fire types, in g specie per kg dry matter burned. Emission factors for other species, uncertainties,
and source information is provided in http://www.geo.vu.nl/~gwerf/GFED/GFED4/ancill/GFED4_Emission_Factors.xlsx. Dry matter carbon
content (DMCC) was derived from the carbonaceous species and used to convert carbon to dry matter.

Specie Savanna Boreal Temperate Tropical Peat Agriculture Mean emissions
forest forest forest (Tg yr−1)

CO2 1686 1489 1647 1643 1703 1585 7320
CO 63 127 88 93 210 102 357
CH4 1.94 5.96 3.36 5.07 20.8 5.82 16.1
NMHC 3.4 8.4 8.4 1.7 1.7 9.9 17.8
H2 1.7 2.03 2.03 3.36 3.36 2.59 9.31
NOx (as NO) 3.90 0.90 1.92 2.55 1.00 3.11 14.60
N2O 0.20 0.41 0.16 0.20 0.20 0.10 0.93
PM2.5 7.2 15.3 12.9 9.1 9.1 6.3 36.6
TPM 8.5 17.6 17.6 13.0 13.0 12.4 46.6
TPC (OC+BC) 3.00 10.10 10.10 5.24 6.06 3.05 18.4
OC 2.62 9.60 9.60 4.71 6.02 2.30 16.6
BC 0.37 0.50 0.50 0.52 0.04 0.75 1.86
SO2 0.48 1.10 1.10 0.40 0.40 0.40 2.32
NH3 0.52 2.72 0.84 1.33 1.33 2.17 4.22
DMCC (%) 48.83 46.50 48.94 49.18 57.01 48.04 –

but also within biomes and between separate fuel classes.
The overall spatial representativeness of the fuel consump-
tion field measurements is reasonable for most fire-prone re-
gions. However, several important regions from a fire emis-
sions perspective – including Southeast Asia and Central
Africa – are under-represented. For this study we used ver-
sion 1 of the fuel consumption database available from http:
//www.geo.vu.nl/~gwerf/FC/.

3.4 Emission factors

Emission factors are used to convert dry matter burned into
emissions of trace gases and aerosols. These were assigned
in GFED3 based on the compilation of Andreae and Mer-
let (2001) with annual updates. A new compilation was de-

veloped by Akagi et al. (2011), who considered a subset of
the available literature focusing on measurements of smoke
that had cooled to ambient temperature but had not under-
gone photochemical processes. In addition to this approach
that may better match the requirements from the atmospheric
community, Akagi et al. (2011) reported mean values for
more biome categories. The most important change in that
regard from the GFED perspective is the partitioning of
the extratropical forest category into temperate and boreal
forests. We compiled a subset of the available species that
are most frequently used in large-scale chemistry transport
models and filled missing values using those of Andreae
and Merlet (2001) with annual updates (see Table 1). Up-
dates to the Akagi et al. (2011) database can be found at
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Figure 7. Comparison of monthly (top panels), and disaggregated daily (middle) and 3-hourly (bottom) emissions from GFED3 (left-hand
side) and GFED4s (right-hand side) for an example grid cell in South America (11.75◦ S, 51.75◦W).

http://bai.acom.ucar.edu/Data/fire/ and will be incorporated
into future GFED versions.

3.5 Redistributing monthly emissions on daily and
3-hourly timescales

We made several improvements to the approach described
by Mu et al. (2011) for redistributing monthly emissions to
daily and 3-hourly time steps in each 0.25◦ grid cell. This
set of higher temporal resolution emissions was created only
for the period of 2003 to the present because of increased
MODIS active fire data availability after the launch of Aqua.

To estimate the daily distribution of emissions, we used
two sources of information: active fires from MCD14ML
and the day of burning reported in the MCD64A1 burned
area product. In tropical regions between 25◦ N and 25◦ S,
we weighted the information content from these two sources
equally in grid cells for which both data streams were avail-
able. In GFED3, the day of burning was not available for
use as a constraint on daily variability. In the extra-tropics
(poleward of 25◦ N and 25◦ S) we solely used active fires
to distribute the daily pattern of emissions. In these regions,
gaps between successive overpasses of Aqua and Terra are
smaller, and active fires have been shown to be moderately
effective in capturing daily variations in fire spread rates
(Veraverbeke et al., 2014). We removed persistent active fire
locations associated with volcanoes, gas flaring, and many

other non-fire sources, using a more recent static hotspot
database (Randerson et al., 2012). A simple 3-day center
mean smoothing filter was applied in tropical regions to ad-
just for gaps in MODIS coverage, following Mu et al. (2011).

We created a climatological diurnal cycle of burning in
each region and for different aggregated vegetation types
to redistribute daily emissions on a 3 h time step. The ap-
proach is similar to the one described in Mu et al. (2011),
and uses active fire data derived from full hemispheric scans
of GOES-11 (west) and GOES-12 (east) observations dur-
ing 2007–2009 with version 6.0 of the WF_ABBA algorithm
(Prins et al., 1998; Reid et al., 2009). Here, we used an im-
proved land cover type product from Friedl et al. (2010),
MCD12C1 version 5.1, during 2007–2009 to create diurnal
cycles of emissions for three aggregated vegetation classes
within continental-scale regions in the western hemisphere.
These diurnal cycles were then applied in other regions using
the same mapping strategy as described in Mu et al. (2011).
An example of the redistribution of emissions using this ap-
proach for daily and hourly emissions is shown in Fig. 7,
showing relatively comparable results as in GFED3.

4 Results

Over the 1997–2016 period, fire emissions according to
GFED4s are on average 2.2 Pg C yr−1 with substantial inter-
annual variability. In Sect. 4.1 we discuss the spatial pattern
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Figure 8. GFED4s burned fraction (a), fuel consumption (b), and
emissions (c) averaged over 1997–2016.

of burned area and the resulting emissions, and in Sect. 4.2
the temporal patterns. We then discuss the modeled fuel con-
sumption (Sect. 4.3) and the greenhouse gas forcing of fires
in Sect. 4.4. We also explain the main differences between
GFED4s and GFED3 as well as differences in emissions be-
tween GFED4s and GFED4, with the latter derived from the
same modeling framework but using the burned area dataset
without small fires (i.e., with burned area from GFED4)
(Sect. 4.5).

4.1 Spatial patterns

The spatial patterns of emissions and burned area are simi-
lar but because fuel consumption is, in general, inversely re-
lated to fire frequency (Table 2), emissions are less spatially
variable than burned area (Fig. 8). About 84 % of global car-
bon emissions have an origin in the tropics between 23.5◦ N
and 23.5◦ S (1830 Tg C yr−1), and 62 % come from tropical
savannas (1341 Tg C yr−1), underscoring the importance of
fire as a driver of biogeochemical cycles and ecosystem pro-
cesses in tropical ecosystems.

The relative importance of different regions or continents
varies depending on whether one is considering burned area,
carbon emissions, or trace gas emissions. For example, while
Equatorial Asia (mostly Indonesia) is responsible for only
0.6 % of global burned area, the region accounts for 8 % of
carbon emissions and 23 % of CH4 emissions from global
fire activity. Boreal forests offer a similar, although less ex-
treme, example: 2.5 % of global burned area, 9 % of global
fire carbon emissions, and 15 % of global fire CH4 emis-
sions. This difference is due to the large variability in fire
behavior and fuel consumption in forested regions with high
fuel loads, especially when fires consume organic soils. The
larger contribution of coarse fuels and smoldering stages of
combustion in organic soils also contributes to higher emis-
sion factors for reduced species such as CO and CH4. More
information on the relative contribution of the different re-
gions is provided in Tables 2 and 3 for fire carbon emis-
sions and in Table 1 for mean annual emissions of indi-
vidual trace gases and aerosols. More time series informa-
tion on individual trace gases and aerosols can be found at
http://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/.

4.2 Temporal dynamics

Forest fires are the primary driver of interannual variability
in fire emissions (Fig. 9, Table 3). In the tropics, much of this
variability is linked with sea surface temperatures, includ-
ing large-scale climate modes such as El Niño, which alter
fire risk in tropical forests (Chen et al., 2016). El Niño years
including 1997–1998, 2002, and 2015 have relatively large
contributions from tropical forests. Peat burning in Equato-
rial Asia contribute substantially to anomalously high emis-
sions 1997 and 2015, in part due to the human-ignited fires
that burn in drained peatlands during prolonged drought peri-
ods associated with El Niño (Field et al., 2016; van der Werf
et al., 2008). Most of the interannual variability in emissions
originates from regions outside of Africa, which is shown in
the top right panel in Fig. 9.

August and September are usually the months with high-
est emissions, coinciding with the main austral fire season
(Fig. 10). This dominance of the Southern Hemisphere is be-
cause Southern Hemisphere Africa has higher emissions than
Northern Hemisphere Africa (especially during the latter part
of our time period) and the deforestation regions south of the
equator are larger and more active than those north of the
equator. Finally, it coincides with the burning season in the
temperate and boreal Northern Hemisphere summer, which
produces far more emissions than these eco-regions in the
Southern Hemisphere summer. The inclusion of small fires
does not influence these dynamics (Fig. 10), while the mod-
ified conversion of burned area to burned fraction of fuel
causes a slight delay in the peak fire season, mostly in Africa
(Fig. 11).
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Figure 9. GFED4s annual fire carbon emissions for various regions and sources.

4.3 Fuel consumption

Modeled and measured (van Leeuwen et al., 2014) fuel con-
sumption agree reasonably when aggregated to biome levels
(Fig. 12). Fuel consumption in savannas and other regions
with herbaceous fuels is lower in GFED4 (both with and
without small fires) than in GFED3 because of increases in
the turnover rates of herbaceous leaf and surface litter pools.
As a consequence, fuel consumption in GFED4 in savannas
has decreased 30 % compared to GFED3. Compared with the
fuel consumption database from van Leeuwen et al. (2014),
GFED4 predicts estimates that are, on average, 14 % higher

than the fuel consumption measured in the collocated grid
cells. GFED4 also shows a somewhat lower range than the
observations.

Fuel consumption in tropical forests is substantially higher
(45 %) than measured. However, measured fuel consump-
tion typically does not account for repeated burning during
the deforestation process, which can lead to complete com-
bustion over a full fire season following multiple fires (van
der Werf et al., 2009; Yokelson et al., 2007). In temperate
forests, GFED4 average fuel consumption is 33 % below the
measured values, while in boreal forests the model is 39 %
higher. The discrepancy in temperate forests can be traced
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Figure 10. Monthly emissions from GFED4 (red) and GFED4s (grey).

back to one very high measurement in Tasmania that is not
reproduced in the collocated grid cell in GFED4; the me-
dians are in close agreement. Pinpointing the reasons for
the disagreement in boreal regions is less straightforward;
the range, mean, and medians for the modeled values ex-
ceed the measured ones. One potential reason might be re-
lated to the relatively large number of experimental burns in
the database of van Leeuwen et al. (2014) for this biome,
which in general occur under conditions less favorable for
large fires to prevent them from growing out of control. For
the state of Alaska, GFED4 estimates of fuel consumption
are similar to estimates from the Alaska Large Fire Database

that rely solely on fuel consumption observations from un-
controlled wildfires (Veraverbeke et al., 2015). The satellite-
derived maps of tree mortality and combustion completeness
led to an increase in fuel consumption in North America. On
average, fuel consumption there is now 38 % higher than in
boreal Asia for grid cells north of 55◦ N and with more than
20 % tree cover. For all other biomes the number of fuel con-
sumption measurements is probably too small for a fair com-
parison.
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Table 3. Carbon emissions estimates and the contribution of different fire categories over the 1997–2016 study period. Region abbreviations
are described in Fig. 3.

Region Carbon emissions (Tg C yr−1) CV (%) Contribution of different fire categories to total carbon emissions (%)

Mean Minimum Maximum Savanna Boreal Temperate Tropical Peat Agriculture
forest forest forest

BONA 59 12 128 53 0.3 86.5 4.2 0.0 7.3 1.7
TENA 18 11 31 28 33.2 0.0 46.4 0.0 0.0 20.3
CEAM 38 15 177 92 45.5 0.0 1.9 36.7 0.0 15.9
NHSA 32 13 60 36 71.1 0.0 0.0 23.0 0.0 5.9
SHSA 291 104 561 44 49.3 0.0 1.8 45.7 0.0 3.2
EURO 8 4 19 43 29.0 0.2 12.2 0.0 0.0 58.6
MIDE 2 1 3 24 35.8 0.0 3.4 0.0 0.0 60.8
NHAF 451 359 645 16 88.3 0.0 0.0 5.2 0.0 6.5
SHAF 669 583 774 7 92.4 0.0 0.1 4.8 0.0 2.7
BOAS 126 45 280 51 2.0 79.5 2.5 0.0 1.7 14.3
TEAS 61 36 85 23 29.8 11.4 12.7 2.4 0.0 43.6
SEAS 115 66 177 28 53.4 0.0 7.1 31.3 0.0 8.3
EQAS 173 18 1110 139 11.2 0.0 0.0 43.7 42.8 2.2
AUST 116 42 190 35 86.3 0.0 9.9 2.3 0.0 1.5
Global 2160 1773 3032 15 65.3 7.4 2.3 15.1 3.7 6.3

4.4 Greenhouse gas forcing of fires and potential for
mitigation

Fires emit the greenhouse gases CO2, CH4, and N2O and
also modify the climate by emitting precursors of aerosols
and ozone, aerosols, and changing surface properties such as
albedo in often complex ways (Randerson et al., 2006; Ward
et al., 2012). Average total annual greenhouse gas emis-
sions according to GFED4s were 7.3 Pg CO2, 16 Tg CH4,
and 0.9 Tg N2O. Note that in this section we refer to C emis-
sions in CO2 mass units rather than the C mass units used
in the rest of the paper. Using a 100-year time horizon and
based on global warming potentials of 34 for CH4 and 298
for N2O (Myhre et al., 2013), this translates to 8.1 Pg CO2
equivalent annually, or 23 % of global fossil fuel CO2 emis-
sions in 2014 (Boden et al., 2017; Le Queré et al., 2015).

However, fire emissions are not generally a net CO2 source
to the atmosphere, and may be better viewed as “fast respi-
ration”, because regrowing vegetation in many burned areas
will sequester a roughly equivalent amount of atmospheric
CO2 during post-fire stages of ecosystem recovery over a pe-
riod of years to decades (Landry and Matthews, 2016). In
general, only fires that are not balanced by regrowth are a
net CO2 source. The most obvious fire types in this category
are fires used in the deforestation process or those that burn
drained peatlands. CO2 emissions from these two fire types
are estimated here to be 0.4 Pg C or 1.3 Pg CO2 per year. In-
cluding CH4 and N2O of all fire types, the contribution of
fires to the greenhouse gas budget is 2.1 Pg CO2 equivalent
annually or 6 % of global fossil fuel CO2 emissions in 2014
(Boden et al., 2017). Another category of fire emissions that
may add to the build-up of atmospheric CO2 are those that
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Figure 11. Monthly GFED4s fire carbon emissions for Northern
Hemisphere Africa (a) and Southern Hemisphere Africa (b) based
on straight conversion of burned area to burned fraction (“pre-
vious”) and with the new parameterization according to Eq. (3)
(“modified”).

increase over time, for example increasing burned area or
combustion completeness in boreal regions related to climate
change. Our time series is too short and our modeling frame-
work is too incomplete to capture the exact magnitude of
emissions from a changing boreal fire regime.

Savanna fire season management has been proposed as a
climate mitigation instrument (Russell-Smith et al., 2013).
By burning early in the season instead of late, fires are in gen-
eral more patchy, release fewer emissions, and prevent large
late-season fires. According to GFED4s, total annual trop-
ical savanna fire emissions averaged 4.9 Pg CO2, 6 Tg CH4,
and 0.6 Tg N2O. In this case, only CH4 and N2O emissions
are relevant and combined account for 0.3 Pg CO2 equivalent
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Figure 12. Measured and modeled fuel consumption for various
biomes showing the range (whiskers), mean (colored dots and di-
amonds), median (open dots and diamonds), and 25th and 75th
percentiles (boxes) for those biomes with more than 10 measure-
ments. Comparison is based on the meta-analysis of van Leeuwen
et al. (2014) and collocated 0.25◦ grid cells. The time periods of
measurement and model do not necessarily overlap. “n” indicates
the number of measurements for each biome. Note the logarithmic
scale.

of annual emissions. Experiments with early burning in Aus-
tralia have shown a potential reduction of up to 50 % (Walsh
et al., 2014), but it is not known to what extent it is possible
to use this approach in other regions, what the side effects
will be, and whether some of the mitigation will be offset
by higher CH4 emission factors because early season fires
may occur when fuels have had less time to cure. In Aus-
tralia the latter is probably not the case (Meyer et al., 2012),
but whether this is found in other regions remains to be in-
vestigated.

4.5 Differences between GFED4s, GFED4, and GFED3

In general, small fire burned area (GFED4s) and the modi-
fied burned-area-to-burned-fraction conversion (GFED4 and
GFED4s) cause emissions to increase, while the optimization
of fuel consumption causes emissions to decrease as com-
pared with earlier versions of GFED. On a global scale, these
modifications yield a modest net increase in fire carbon emis-
sions in GFED4s as compared with GFED3 (11 % for the
overlapping 1997–2011 time period). However, the effects
of the three main adjustments vary spatially; on a regional
scale the differences are larger (Fig. 13). The relative effect
of the small fire burned area is largest in temperate and sub-
tropical regions where agricultural waste burning and shift-
ing cultivation are important drivers of fire activity. The more
than doubling of burned area in Central America and North-

ern Hemisphere South America compared to GFED3 reflects
differences in both GFED4 burned area and the inclusion of
small fires (Fig. 13). Burned area in Temperate North Amer-
ica and Europe also increases by about a factor of 2, and most
of this difference is due to small fire burned area.

Our modifications to herbaceous fuel turnover rates cause
fuel consumption per unit area (per m2 of burned area) to
decrease, whether or not small fire burned area is included,
in all regions except Central Asia, where consumption in-
creased by approximately 20 to 30 % (Fig. 13). Estimates
of fuel consumption per unit area are similar in GFED4
and GFED4s, indicating that fuel loads in areas burned by
small fires are not substantially different from those in nearby
mapped burned areas (or that our relatively coarse model-
ing setup cannot resolve finer-scale landscape differences).
The exception is Central Asia, where small fire burned area
causes a relative increase in burned area in forested regions.
In Central America and Equatorial Asia, in contrast, small
fire burned area occurs predominantly in areas with relatively
low fuel loads.

The modified burned-area-to-burned-fraction parameteri-
zation causes an increase of 5 % in carbon emissions (not
shown). The new parameterization only influences grid cells
that burn for more than 1 month in a season, and has a larger
effect in grid cells that have a high burn fraction. Regions
with frequent savanna fires therefore have the highest sensi-
tivity, with emissions in Northern Hemisphere Africa, South-
ern Hemisphere Africa, and Australia increasing by 9, 8,
and 6 %, respectively. In other regions, the differences are
smaller than 2 %. In addition to the increase in emissions in
frequently burning savannas, the new parameterization also
changes the temporal dynamics (Fig. 11); early season emis-
sions are lower because less fuel remains from the previous
growing season, and late-season emissions are higher be-
cause the parameterization has the effect of increasing grid-
cell level fuel consumption later in the fire season.

Without small fire burned area, the impact of decreas-
ing fuel consumption and a minor reduction in burned area
(2 % globally) yields a total carbon emissions estimate of
1.5 Pg C yr−1 in GFED4, a 23 % reduction compared to
GFED3 during 1997–2011. Although globally GFED4 emis-
sions are lower than GFED3, in some regions both burned
area and emissions increase, mostly in temperate regions
(Fig. 13). Using the new set of emission factors that sepa-
rate extratropical forests into boreal forest and temperate for-
est components generates a larger increase in CO emissions
in boreal regions than expected from the change in carbon
emissions alone (Fig. 14).

5 Discussion

We have calculated global carbon emissions from fires by us-
ing a biogeochemical model to combine satellite fire obser-
vations with estimates of fuel consumption that respond to
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variations in environmental conditions. In a subsequent step,
we have used a higher-resolution set of emission factors to
convert carbon emissions into emissions of trace gases and
aerosols. Since the publication of GFED3 in 2010, burned
area algorithms have been improved considerably (Giglio et
al., 2013), and now include a preliminary estimate of the
impact of small fires (Randerson et al., 2012). In parallel,
the fuel consumption database created by van Leeuwen et
al. (2014) has enabled the development of an improved pa-
rameterization of herbaceous vegetation turnover in grass-

land and savanna ecosystems, and validation of our modeled
values in several other biomes. New emission factor mea-
surements and a more systematic assessment of the available
data has led to a more consistent set of emission that bet-
ter resolve extratropical forest biomes (Akagi et al., 2011).
Together, all of the elements required to calculate emissions
following the Seiler and Crutzen (1980) paradigm have seen
substantial improvements. Our new emission estimates are
therefore more reliable than previous estimates because they
account for updated information on key components of the
fire emissions equation, but uncertainties remain substantial
and are difficult to quantify.

The addition of small fire burned area is a key improve-
ment in GFED4s compared to earlier versions, for example,
and the modifications we describe in this paper have im-
proved our estimates compared to Randerson et al. (2012).
However, the actual magnitude of small fire burned area is
difficult to quantify on global scales because it requires a
large sample of burned area measurements from sensors with
a higher spatial resolution than MODIS. To date, Landsat es-
timates of burned area have been produced for various re-
gions and purposes including the validation of coarser res-
olution data (Padilla et al., 2014, 2015; Roy and Boschetti,
2009; Silva et al., 2005) but a publicly available and global-
scale database of Landsat burned area is needed to better
validate ongoing efforts to produce reliable burned area esti-
mates from coarser resolution satellite imagery. In addition,
new missions such as the Visible Infrared Imager Radiome-
ter Suite (VIIRS) and Landsat-8 also increase the number of
active fires detected compared to MODIS (Schroeder et al.,
2014b).

A somewhat similar story exists with respect to validating
fuel consumption. The fuel consumption database from van
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Leeuwen et al. (2014) has enabled a more systematic valida-
tion but the number of studies is limited, relatively few mea-
surements were made during our study period, and it is ques-
tionable to what degree the local measurements are represen-
tative for the 0.25◦ grid cell averages reported here. Thus,
our estimates are likely to remain most useful for large-scale
studies. Although recent regional studies have shown that our
global modeling framework is indeed capable of generating
reliable large-scale emissions in Alaska and the tropics, these
studies also show that GFED may have problems capturing
finer-scale dynamics (Andela et al., 2016; Veraverbeke et al.,
2015). While improved satellite missions and combining var-
ious data streams may help in improving the fuel consump-
tion parameterization in models, systematic field-based as-
sessments of fuel consumption along gradients of productiv-
ity and other factors influencing variability in fuel consump-
tion within biomes are a necessary step in further improving
bottom-up fire emission estimates. New satellite estimates
of biomass may be helpful in this regard (for example the
Global Ecosystem Dynamics Investigation (GEDI) mission),
particularly in deforestation and temperate forest and shrub-
land regions, where aboveground living biomass comprises a
large component of fuel consumption.

Given the large uncertainties in bottom-up emission esti-
mates in the past, top-down constraints have often been used
to pinpoint discrepancies between modeled and measured
atmospheric abundances of trace gases or aerosols. Carbon
monoxide (CO) was most often used (Arellano et al., 2004;
Hooghiemstra et al., 2011; Huijnen et al., 2016) because fires
are a major source of CO, its lifetime is relatively long, and
column CO is measured from several satellite sensors. More
recent work also includes other species such as formalde-
hyde, NO2, and aerosol optical depth (Bauwens et al., 2016;
Mebust et al., 2011; Petrenko et al., 2012). While provid-
ing additional information on strengths and weaknesses of
inventories such as GFED, for example potentially missing
late-season fires (Castellanos et al., 2014), the results of these
studies are often contradicting (van Leeuwen et al., 2013),
potentially due to the use of different atmospheric models
and sources of observations. We would therefore respect-
fully argue that uncertainties in bottom-up and top-down ap-
proaches are overlapping. For example, carbon emissions
from Indonesia during the 2015 high fire year according to
GFED4s were almost 400 TgC (Fig. 9, http://www.geo.vu.nl/
~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt). Two inver-
sion studies using Measurement of Pollution in the Tropo-
sphere (MOPITT) CO measurements derived either 100 Tg
higher (Yin et al., 2016) or 100 Tg lower (Huijnen et al.,
2016). Part of the difference can be attributed to the use of
higher CO emission factors in the latter study, which thus re-
quires less carbon burned to match atmospheric observations,
but part is also due to differences in model setup and analy-
sis design. The use of different top-down constraints (e.g. In-
frared Atmospheric Sounding Interferometer (IASI) versus
MOPITT) could lead to additional discrepancies, although

studies employing column CO2 from the Orbiting Carbon
Observatory-2 (OCO-2) may omit some of the issues related
to uncertainty in emission factors. Heymann et al. (2017) pro-
vided evidence for lower estimates than found in GFED4s in
Indonesia for 2015 based on OCO-2 data.

Studies focusing on aerosol optical depth (AOD) do not
give conflicting results but indicate that bottom-up estimates
are roughly a factor 3 too low (Johnston et al., 2012; Kaiser
et al., 2012; Petrenko et al., 2012; Tosca et al., 2013). While
some studies have therefore boosted bottom-up emissions
or created new inventories with much higher emissions to
get AOD values more in line with observations (Liousse
et al., 2010), this may jeopardize the reasonable agreement
between bottom-up and top-down estimates found for most
trace gases. To date, the disagreement between measured and
modeled AOD has most often been linked to bottom-up emis-
sions, but AOD calculation in models are uncertain as well.
For example, increasing the hygroscopicity reduced the off-
set in tropical regions (Reddington et al., 2016). Besides ex-
ploring the factors that are used to estimate AOD in models
such as the hygroscopicity, combining multiple species in in-
version studies and better emission factors are needed to re-
solve one of the most important questions in biomass burning
emissions research.

Most of the emission factors (EFs) used in these top-down
approaches are based on midday sampling during peak fire
emission rates. The EFs measured under these somewhat re-
stricted circumstances are still highly variable with a coef-
ficient of variation about the mean of about 40 % on aver-
age (Akagi et al., 2011). The diurnal or longer-term varia-
tion in EFs should be larger but has not been explicitly well-
measured yet (Saide et al., 2015). The EFs of many species
have rarely been measured in the field for important fire types
such as wildfires (Akagi et al., 2011) and for some compound
classes with perhaps the most important missing species be-
ing the semi-volatile precursors to organic aerosol, which are
difficult to measure even in lab experiments (Gilman et al.,
2015). A related area of uncertainty is the temporal evolution
of emissions within the fire plume. Only a few field studies
have measured how organic aerosol (OA) levels change with
time. In one an increase in OA by a factor of about 2.5 was
observed (Yokelson et al., 2009), while in another study OA
decreased by about 20 % (Akagi et al., 2012). Understand-
ing what controls secondary OA levels is critical to guide the
proper use of AOD in inversions and to understand health
and climate impacts.

Additional small errors also occur. In straightforward ap-
plication of the carbon mass balance method the carbon con-
tent of the fuel that is actually volatilized is based on a few
carbon content measurements of fuel subsamples. EFs are
proportional to the carbon content used. This can theoret-
ically cause an overestimation of the EFs by about 4 % if
charcoal yields are important (Surawski et al., 2016). On
the other hand, uncertainty in what ecosystem components
actually burn means that the high carbon components can

Earth Syst. Sci. Data, 9, 697–720, 2017 www.earth-syst-sci-data.net/9/697/2017/

http://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt
http://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt


G. R. van der Werf et al.: Global fire emissions estimates during 1997–2016 715

burn preferentially leading to underestimated EFs if based
on average fuel C content (Santin et al., 2015). In general
these small uncertainties may tend to cancel out. EFs may
also be systematically overestimated by 1–3 % because many
carbon-containing species cannot yet be measured (Akagi et
al., 2011).

For GFED3, we performed a Monte Carlo simulation to
estimate carbon emissions uncertainties based on assumed
uncertainties of key input data including burned area and
best-guess estimates of various model parameters. We now
refrain from estimating formal uncertainties because of dif-
ficulties in assessing the uncertainties in the various layers.
For example, the burned area in many regions where small
fires seem to be important now by far exceeds the range
of uncertainty reported for GFED3 burned area. Given the
level of agreement between our burned area estimates and
more refined regional estimates (Randerson et al., 2012), and
between our modeled biome-average fuel consumption esti-
mates and those measured in the field, a best-guess uncer-
tainty assessment at regional scales could be a 1σ of about
50 % in general but higher in areas where small fire burned
area is important or where there is significant fuel consump-
tion in organic soils.

Lowering and/or better quantifying this uncertainty in-
volves a thorough assessment of the burned area estimates
and especially those from small fires, using more direct satel-
lite observations of fire severity and fuel consumption based
on FRP data, and new field data on fuel consumption and
emission factors along critical gradients such as productiv-
ity and grazing intensity. Increasing the spatial resolution of
our modeling framework could lower the impact of spatial
heterogeneity in fire parameters and make for easier com-
parisons with or validation using ground-based data. Better
understanding and modeling diurnal cycles may be equally
important in addressing how variable, for example, the rela-
tive importance of flaming and smoldering combustion is. Fi-
nally, with new missions such as Suomi-NPP and the various
Sentinel satellites now collecting data, an emphasis on merg-
ing various time series would help in lengthening the time
series over which we have consistent data to over 20 years.

6 Data availability

GFED data are freely available at http://www.globalfiredata.
org. The site provides documentation, related publications,
updates, and online analysis tools to compute emissions for
custom regions and countries.

7 Conclusions

We have revised the Global Fire Emissions Database us-
ing new observations of burned area including those from
smaller fires as well as several other new data streams. In ad-
dition we have modified the fuel consumption parameteriza-

tion in our model to better match observations. Global aver-
age fire emissions were estimated to be 2.2 Pg C yr−1 over
1997–2016 with substantial interannual variability. This is
an 11 % increase compared to our previous work (GFED3),
and in regions where small fires are relatively important such
as temperate cropland regions the increase could be as large
as 100 %. Net greenhouse gas emissions from all fires were
on average 6 % of global 2014 fossil fuel CO2 emissions,
consisting of 0.4 Pg C yr−1 emissions from deforestation and
tropical peat fires, which are a net CO2 source to the at-
mosphere just like fossil fuel emissions, and 16 Tg CH4 and
0.9 Tg N2O yr−1 from all fire types using a 100-year horizon
to convert the warming potential of these greenhouse gases
to CO2 equivalents.

Over the past several years, uncertainties in all of the data
layers used to calculate emissions (burned area, fuel con-
sumption, and emission factors) have been reduced from new
algorithms and data availability. While biome-level fuel con-
sumption rates are now more in line with observations than
in our previous work, uncertainties are still substantial at
higher resolutions as indicated by regional studies. In ad-
dition, the small fire burned area approach carries substan-
tial uncertainties and is known to be impacted by resam-
pling error. Merging information from the long-term MODIS
era with newer instruments could reduce some of these un-
certainties, but carefully designed and interdisciplinary field
campaigns measuring fuel consumption, fire dynamics, and
emission factors along gradients and throughout fire seasons
are equally necessary to further improve biomass burning es-
timates.
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