1,460 research outputs found

    Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades

    Get PDF
    We present the first direct experimental evidence for the charge excess in high energy particle showers predicted nearly 40 years ago by Askaryan. We directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio frequency pulses produced whenever a shower was present. The measured electric field strengths are consistent with a completely coherent radiation process. The pulses show 100% linear polarization, consistent with the expectations of Cherenkov radiation. The field strength versus depth closely follows the expected particle number density profile of the cascade, consistent with emission from excess charge distributed along the shower. These measurements therefore provide strong support for experiments designed to detect high energy cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let

    Simultaneous dynamic electrical and structural measurements of functional materials

    Get PDF
    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli

    Influence of the LPM effect and dielectric suppression on particle air showers

    Get PDF
    An analysis of the influence of the Landau-Migdal-Pomeranchuk (LPM) effect on the development of air showers initiated by astroparticles is presented. The theory of Migdal is studied and compared with other theoretical methods, particularly the Blankenbecler and Drell approach. By means of realistic computer simulations and using algorithms that emulate Migdal's theory, including also the so-called dielectric suppression, we study the behavior of the relevant observables in the case of ultra-high energy primaries. We find that the LPM effect can significantly modify the development of high energy electromagnetic showers in certain cases.Comment: 18 pages, 13 figures, 1 table. To appear in Phys. Rev.

    Characterization of neutrino signals with radiopulses in dense media through the LPM effect

    Get PDF
    We discuss the possibilities of detecting radio pulses from high energy showers in ice, such as those produced by PeV and EeV neutrino interactions. It is shown that the rich radiation pattern structure in the 100 MHz to few GHz allows the separation of electromagnetic showers induced by photons or electrons above 100 PeV from those induced by hadrons. This opens up the possibility of measuring the energy fraction transmitted to the electron in a charged current electron neutrino interaction with adequate sampling of the angular distribution of the signal. The radio technique has the potential to complement conventional high energy neutrino detectors with flavor information.Comment: 5 pages, 4 ps figures. Submitted to Phys. Rev. Let

    Tug-of-war between corrugation and binding energy: revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system

    Full text link
    The formation of multidomain epitaxial graphene on Rh(111) under ultra-high vacuum (UHV) conditions has been characterized by scanning tunnelling microscopy (STM) measurements and density functional theory (DFT) calculations. At variance with the accepted view for strongly interacting graphene-metal systems, we clearly demonstrate the formation of different rotational domains leading to multiple moiré structures with a wide distribution of surface periodicities. Experiments reveal a correlation between the STM apparent corrugation and the lattice parameter of the moiré unit cell, with corrugations of just 30-40 pm for the smallest moirés. DFT calculations for a relevant selection of these moiré patterns show much larger height differences and a non-monotonic behaviour with the moiré size. Simulations based on non-equilibrium Green's function (NEGF) methods reproduce quantitatively the experimental trend and provide a detailed understanding of the interplay between electronic and geometric contributions in the STM contrast of graphene systems. Our study sheds light on the subtle energy balance among strain, corrugation and binding that drives the formation of the moiré patterns in all graphene/metal systems and suggests an explanation for the success of an effective model only based on the lattice mismatch. Although low values of the strain energy are a necessary condition, it is the ability of graphene to corrugate in order to maximize the areas of favourable graphene-metal interactions that finally selects the stable configurationsWe acknowledge financial support from Spanish grants MAT2013-41636-P, MAT2011-23627, MAT2011-26534, CSD2010-00024 (MINECO, Spain) and S2009/MAT-1467 (CAM, Spain). A.J.M.G. was supported by a Marie Curie action under the Seventh Framework Programme. P.P. was supported by the Ramón y Cajal Progra

    Cancellariidae Gray, 1853 del Plioceno de la provincia de Målaga, España

    Get PDF
    Se ha realizado un estudio sistemåtico de la familia Cancellariidae Gray, 1853 del Plioceno de la provincia de Målaga con el objeto de catalogar la malacofauna perteneciente a dicha familia y la consecuente revisión de las categorías taxonómicas supraespecíficas. Se citan 12 especies: una perteneciente a la subfamilia Admetulinae Troschel, 1869: Admetula sp., y 11 pertenecientes a la subfamilia Cancellariinae Gray, 1853: Cancellaria (Bivetiella) cancellata (Linné, 1766); Sveltia lyrata (Brocchi, 1814); Sveltia varricosa (Brocchi, 1814); Calcarata calcarata (Brocchi, 1814); Trigonostoma (Trigonostoma) umbilicaris (Brocchi, 1814); Trigonostoma (Trigonostoma) bellardii (De Stefani & Pantanelli, 1880); Trigonostoma (Ventrilia) cassidea (Brocchi, 1814); Tribia tribulus (Brocchi, 1814); Bonellitia serrata (Bronn, 1831); Bonellitia bonellii (Bellardi, 1841) y Brocchinia mitraeformis (Brocchi, 1814). Palabras clave: Cancellariidae, Gastropoda, Mollusca, Plioceno, Målaga, España

    Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection

    Full text link
    We report on measurements of 11-18 cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultra high-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultra high-energy neutrinos.Comment: updated figure 10; fixed typo in equation 2.2; accepted by PR

    Radio Detection of High Energy Particles: Coherence Versus Multiple Scales

    Get PDF
    Radio Cherenkov emission underlines detection of high energy particles via a signal growing like the particle-energy-squared. Cosmic ray-induced electromagnetic showers are a primary application. While many studies have treated the phenomenon approximately, none have attempted to incorporate all the physical scales involved in problems with time- or spatially- evolving charges. We find it is possible to decompose the calculated fields into the product of a form factor, characterizing a moving charge distribution, multiplying a general integral which depends on the charge evolution. In circumstances of interest for cosmic ray physics, the resulting expressions can be evaluated explicitely in terms of a few parameters obtainable from shower codes. The classic issues of Frauhofer and Fresnel zones play a crucial role in the coherence.Comment: 25 pages, 10 figure

    Lensing of ultra-high energy cosmic rays in turbulent magnetic fields

    Get PDF
    We consider the propagation of ultra high energy cosmic rays through turbulent magnetic fields and study the transition between the regimes of single and multiple images of point-like sources. The transition occurs at energies around Ec≃Z 41EeV(Brms/5ÎŒG)(L/2kpc)3/250pc/LcE_c\simeq Z~41 {\rm EeV}(B_{rms}/5 \mu{\rm G}) (L/ 2 {\rm kpc})^{3/2}\sqrt{50 {\rm pc}/L_c}, where LL is the distance traversed by the CR's with electric charge ZeZe in the turbulent magnetic field of root mean square strength BrmsB_{rms} and coherence length LcL_c. We find that above 2Ec2 E_c only sources located in a fraction of a few % of the sky can reach large amplifications of its principal image or start developing multiple images. New images appear in pairs with huge magnifications, and they remain amplified over a significant range of energies. At decreasing energies the fraction of the sky in which sources can develop multiple images increases, reaching about 50% for E>Ec/2E>E_c/2. The magnification peaks become however increasingly narrower and for E<Ec/3E<E_c/3 their integrated effect becomes less noticeable. If a uniform magnetic field component is also present it would further narrow down the peaks, shrinking the energy range in which they can be relevant. Below E≃Ec/10E\simeq E_c/10 some kind of scintillation regime is reached, where many demagnified images of a source are present but with overall total magnification of order unity. We also search for lensing signatures in the AGASA data studying two-dimensional correlations in angle and energy and find some interesting hints.Comment: 30 pages, 16 figures, final version with minor change

    Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux

    Full text link
    We report results from 120 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4; in final PRL revie
    • 

    corecore