59 research outputs found

    The effect of post-discharge educational intervention on patients in achieving objectives in modifiable risk factors six months after discharge following an episode of acute coronary syndrome, (CAM-2 Project): a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>We investigated whether an intervention mainly consisting of a signed agreement between patient and physician on the objectives to be reached, improves reaching these secondary prevention objectives in modifiable cardiovascular risk factors six-months after discharge following an acute coronary syndrome.</p> <p>Background</p> <p>There is room to improve mid-term adherence to clinical guidelines' recommendations in coronary heart disease secondary prevention, specially non-pharmacological ones, often neglected.</p> <p>Methods</p> <p>In CAM-2, patients discharged after an acute coronary syndrome were randomly assigned to the intervention or the usual care group. The primary outcome was reaching therapeutic objectives in various secondary prevention variables: smoking, obesity, blood lipids, blood pressure control, exercise and taking of medication.</p> <p>Results</p> <p>1757 patients were recruited in 64 hospitals and 1510 (762 in the intervention and 748 in the control group) attended the six-months follow-up visit. After adjustment for potentially important variables, there were, between the intervention and control group, differences in the mean reduction of body mass index (0.5 vs. 0.2; p < 0.001) and waist circumference (1.6 cm vs. 0.6 cm; p = 0.05), proportion of patients who exercise regularly and those with total cholesterol below 175 mg/dl (64.7% vs. 56.5%; p = 0.001). The reported intake of medications was high in both groups for all the drugs considered with no differences except for statins (98.1% vs. 95.9%; p = 0.029).</p> <p>Conclusions</p> <p>At least in the short term, lifestyle changes among coronary heart disease patients are achievable by intensifying the responsibility of the patient himself by means of a simple and feasible intervention.</p

    Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog

    Get PDF
    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 μM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 μM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 μM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Molecular gated nanoporous anodic alumina for the detection of cocaine

    Full text link
    [EN] We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement molecular gates for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10&#8722;7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.We thank Projects MAT2015-64139-C4-1-R and TEC2015-71324-R (MINECO/FEDER), the Catalan Government (Project 2014 SGR 1344), the ICREA (ICREA2014 Academia Award) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. We also thank to the Agencia Espanola del Medicamento y Productos Sanitarios for its concessions. A.R. thanks the UPV for her predoctoral fellowship. The authors also thank the Electron Microscopy Service at UPV for support.Ribes, À.; Xifre Perez, E.; Aznar, E.; Sancenón Galarza, F.; Pardo Vicente, MT.; Marsal, LF.; Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports. 6. https://doi.org/10.1038/srep38649S386496Nadrah, P., Planinšek, O. & Gaberšček, M. Stimulus-responsive Mesoporous Silica Particles. J. Mater. Sci. 49, 481–495 (2014).Baeza, A., Colilla, M. & Vallet-Regí, M. Advances in Mesoporous Silica Nanoparticles for Targeted Stimuli-Responsive Drug Delivery. Expert Opin. Drug Deliv. 12, 319–337 (2015).Karimi, M., Mirshekari, H., Aliakbari, M., Zangabad, P. S. & Hamblin, M. R. Smart Mesoporous Silica Nanoparticles for Controlled-Release Drug Delivery. Nanotech. Rev. 5, 195–207 (2016).Aznar, E. et al. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 116, 561−718 (2016).Sancenón, F., Pascual, Ll., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated Silica Mesoporous Materials in Sensing Applications. Chemistry Open. 4, 418–437 (2015).Lu, C.-H., Willner, B. & Willner, I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACSNano 7, 8320–8332 (2013).Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles Functionalized With Reversible Molecular And Supramolecular Switches. Chem. Soc. Rev. 39, 2203–2237 (2010).Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores. Angew. Chem. Int. Ed. 51, 4864 4867 (2012).Zhu, C. L., Lu, C. H., Song, X. Y., Yang, H. H. & Wang, X. R. Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. J. Am. Chem. Soc. 133, 1278–1281 (2011).Özalp, V. C., Pinto, A., Nikulina, E., Chulivin, A. & Schäfer, T. In Situ Monitoring of DNA-Aptavalve Gating Function on Mesoporous Silica Nanoparticles. Part. Part. Sys. Charact. 31, 161–167 (2014).Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J. & Jung, J. H. Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. J. Mater. Chem. 21, 7882–7885 (2011).Zhang, Z., Wang, F., Balogh, D. & Willner, I. pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes. J. Mater. Chem. B. 2, 4449–4455 (2014).Fu, L. et al. Portable and Quantitative Monitoring of Heavy Metal Ions Using Dnazyme-Capped Mesoporous Silica Nanoparticles with a Glucometer Readout. J. Mater. Chem. B. 1, 6123–6128 (2013).Díez, P. et al. Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).Tang, D. et al. Low-Cost and Highly Sensitive lmmunosensing Platform for Aflatoxins Using One-Step Competitive Displacement Reaction Mode and Portable Glucometer-Based Detection. Anal. Chem. 86, 11451–11458 (2014).Hou, L., Zhu, C., Wu, X., Chen, G. & Tang, D. Bioresponsive Controlled Release from Mesoporous Silica Nanocontainers with Glucometer Readout. Chem. Commun. 50, 1441–1443 (2014).Chen, Z. et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens. Bioelectro. 75, 8–14 (2016).Pascual, L. L. et al. Oligonucleotide-Capped Mesoporous Silica Nanoparticles as DNA-Responsive Dye Delivery Systems for Genomic DNA Detection. Chem. Commun. 51, 1414–1416 (2015).Qian, R., Ding, I. & Ju, H. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J. Am. Chem. Soc. 135, 13282–13285 (2013).Ren, K., Wu, J., Zhang, Y., Yan, F. & Ju, H. Proximity Hybridization Regulated DNA Biogate for Sensitive Electrochemical Immunoassay. Anal. Chem. 86, 7494–7499 (2014).Chen, Y., Santos, A., Wang, Y., Wang, C. & Losic, D. Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Appl Mater Interfaces. 7, 19816–19824 (2015).Aw, M. S., Bariana, M. & Losic, D. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 319–354 (Springer International Publishing, 2015).Urteaga, R. & Berli, C. L. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 249–269 (Springer International Publishing, 2015).Vojkuvka, L., Marsal, L. F., Ferré-Borrull, J., Formentin, P. & Pallarés, J. Self-Ordered Porous Alumina Membranes with Large Lattice Constant Fabricated by Hard Anodization. Superlattices Microstruct. 44, 577–582 (2008).De la Escosura-Muñiz, A. & Merkoçi, A. Nanochannels Preparation and Application in Biosensing. ACS Nano. 6, 7556–7583 (2012).Kumeria, T. et al. Nanoporous Anodic Alumina Rugate Filters for Sensing of Ionic Mercury: Toward Environmental Point-of-Analysis Systems. ACS Appl. Mater. Interfaces. 6, 12971−12978 (2014).Santos, A., Kumeria, T. & Losic, D. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors. Materials. 7, 4297–4320 (2014).Ferré-Borrull, J., Pallarès, J., Macías, G. & Marsal, L. F. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications. Materials. 7, 5225–5253 (2014).Gong, D., Yadavalli, V., Paulose, M., Pishko, M. & Grimes, C. A. Controlled Molecular Release Using Nanoporous Alumina Capsules. Biomed Microdevices. 5, 75–80 (2003).Alvarez, S. D., Li, C.-P., Chiang, C. E., Schuller, I. K. & Sailor, M. J. A Label-Free Porous Alumina Interferometric Immunosensor. ACSNano. 3, 3301–3307 (2009).Krismastuti, F. S. H., Bayat, H., Voelcker, N. H. & Schönherr, H. Real Time Monitoring of Layer-by-Layer Polyelectrolyte Deposition and Bacterial Enzyme Detection in Nanoporous Anodized Aluminum Oxide Anal. Chem. 87, 3856–3863 (2015).Ma, D.-L. et al. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium (III) Complex and a Three-Way DNA Junction Architecture. ACS Appl. Mater. Interfaces. 7, 19060−19067 (2015).Kohli, P. et al. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science 305, 984–986 (2004).Abelow, A. E. et al. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem. Commun. 46, 7984–7986 (2010).Ma, D.-L., Chan, D. S.-H. & Leung, C.-H. Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications. Acc. Chem. Res. 47, 3614–3631 (2014).Wanga, G., Zhua, Y., Chena, L. & Zhanga, X. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens. Bioelectron. 63, 552–557 (2015).Laptenko, O. et al. The p53 C Terminus Controls Site-Specific DNA Binding and Promotes Structural Changes within the Central DNA Binding Domain. Molec. Cell. 57, 1034–1046 (2015).McKeague, M. & DeRosa, M. C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids. 2012, 1–20 (2012).McKeague, M. et al. Analysis of In Vitro Aptamer Selection Parameters, J. Mol. Evol. 81, 150–161 (2015).Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818–822 (1990).Wochner, A. et al. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem. 373, 34–42 (2008).Song, K. M., Jeong, E., Jeon, W., Cho, M. & Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 402, 2153–2161 (2012).Özalp, V. C. & Schäfer, T. Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chem. Eur. J. 17, 9893–9896 (2011).Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J. Am. Chem Soc. 123, 4928–4931 (2001).Wen, Y. et al. DNA-based intelligent logic controlled release systems. Chem. Commun. 48, 8410–8412 (2012).Chen, L. et al. Programmable DNA switch for bioresponsive controlled release. J. Mater. Chem. 21, 13811–13816 (2011).Oroval, M. et al. An aptamer-gated silica mesoporous material for thrombin detection. Chem. Commun. 49, 5480–5482 (2013).Barroso, M., Gallardo, E. & Queiroz, J. A. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis. 1, 977–1000 (2009).Phan, H. M., Yoshizuka, K., Murry, D. J. & Perry, P. J. Drug testing in the workplace. Pharmacotherapy. 32, 649–656 (2012).Kidwell, D. A., Blanco, M. A. & P. Smith, F. P. Cocaine detection in a university population by hair analysis and skin swab testing. Forensic Sci. Int. 84, 75–86 (1997).Swensen, J. S. et al. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor. J. Am. Chem. Soc. 131, 4262–4266 (2009).Cai, Q. et al. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal. Bioanal. Chem. 400, 289–294 (2011).Zou, R. et al. Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv. 2, 4636–4638 (2012).Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998 (2013).Marsal, L. F., Vojkuvka, L., Formentin, P., Pallarés, J. & Ferré-Borrull, J. Fabrication and Optical Characterization of Nanoporous Alumina Films Annealed at Different Temperatures. Optical Mater. 31, 860–864 (2009).Bosker, W. M. & Huestis, M. A. Oral Fluid Testing for Drugs of Abuse. Clinical Chem. 55, 1910–1931 (2009).Kolbrich, E. A. et al. Cozart® RapiScan Oral Fluid Drug Testing System: An Evaluation of Sensitivity, Specificity, and Efficiency for Cocaine Detection Compared with ELISA and GC-MS Following Controlled Cocaine Administration. J. Anal Toxicol. 27, 407–411 (2003).Cooper, G., Wilson, L., Reid, C., Main, L. & Hand, C. Evaluation of the Cozart® RapiScan drug test system for opiates and cocaine in oral fluid. Forensic Sci. Int. 150, 239–243 (2005).Chang, Y. H. et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip. 12, 3020–3023 (2012).Walczak, R. et al. Toward Portable Instrumentation for Quantitative Cocaine Detection with Lab-on-a-Paper and Hybrid Optical Readout. Procedia Chem. 1, 999–1002 (2009).Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998–4003 (2013)

    Spatial access inequities and childhood immunisation uptake in Kenya

    No full text
    Background Poor access to immunisation services remains a major barrier to achieving equity and expanding vaccination coverage in many sub-Saharan African countries. In Kenya, the extent to which spatial access affects immunisation coverage is not well understood. The aim of this study was to quantify spatial accessibility to immunising health facilities and determine its influence on immunisation uptake in Kenya while controlling for potential confounders. Methods Spatial databases of immunising facilities, road network, land use and elevation were used within a cost friction algorithim to estimate the travel time to immunising health facilities. Two travel scenarios were evaluated; (1) Walking only and (2) Optimistic scenario combining walking and motorized transport. Mean travel time to health facilities and proportions of the total population living within 1-h to the nearest immunising health facility were computed. Data from a nationally representative cross-sectional survey (KDHS 2014), was used to estimate the effect of mean travel time at survey cluster units for both fully immunised status and third dose of diphtheria-tetanus-pertussis (DPT3) vaccine using multi-level logistic regression models. Results Nationally, the mean travel time to immunising health facilities was 63 and 40 min using the walking and the optimistic travel scenarios respectively. Seventy five percent of the total population were within one-hour of walking to an immunising health facility while 93% were within one-hour considering the optimistic scenario. There were substantial variations across the country with 62%(29/47) and 34%(16/47) of the counties with  1-h were significantly associated with low immunisation coverage in the univariate analysis for both fully immunised status and DPT3 vaccine. Children living more than 2-h were significantly less likely to be fully immunised [AOR:0.56(0.33–0.94) and receive DPT3 [AOR:0.51(0.21–0.92) after controlling for household wealth, mother’s highest education level, parity and urban/rural residence. Conclusion Travel time to immunising health facilities is a barrier to uptake of childhood vaccines in regions with suboptimal accessibility (> 2-h). Strategies that address access barriers in the hardest to reach communities are needed to enhance equitable access to immunisation services in Kenya
    corecore