28 research outputs found

    Effects of the Unified Viscoplastic Formulation and Temperature Terms on the Thermomechanical Behavior of Soldering Materials

    Get PDF
    Solder materials are critical packaging compounds and due to usually weakest melting temperature among packaging constitutive materials, thus, they are frequently subjected to a multitude of physical phenomena: creep, fatigue and combined hardening effects. The complexity and interaction of such factors must be considered in suitable way in the mechanical behavior modeling using the appropriate material behavior laws. The choice of the mechanical model depends on several factors such as the complexity of constitutive equations to be integrated, the availability and suitability of implementation in the FE codes, the number of parameters to be identified, the capability of the model to represent the most common physical features of the material… Following these observations and in order to deal with these critical remarks, comparisons between the most common unified viscoplastic models should be done in the local and finite element levels for the decision upon the most efficient model. That is the aim of this paper with application to a tin based solder token as the test material

    Modélisation thermomécanique de l'assemblage d'un composant diamant pour l'électronique de puissance haute température

    Get PDF
    L'utilisation du diamant comme composant d'électronique de puissance est une perspective intéressante tant en ce qui concerne les applications hautes température que forte puissance. La problématique principale de ces travaux réalisés dans le cadre du programme Diamonix, réside dans l'étude et l'élaboration d'un packaging permettant la mise en oeuvre d'une puce diamant devant fonctionner à des températures variant entre -50°C et 300°C. Nous nous sommes intéressés au choix des matériaux de connexion de la puce avec son environnement. Suite à l'étude bibliographique, nous proposons différentes solutions de matériaux envisageables pour le substrat métallisé, les brasures et les métallisations. Dans un second temps, les différents éléments ont été réalisés puis caractérisés à partir d'essais de nanoindentation et de nanorayage. Des essais mécaniques ont permis de caractériser le comportement élastoviscoplastique et l'endommagement des brasures. Ces derniers essais ont servi de base expérimentale à l'identification des paramètres d'un modèle de comportement viscoplastique couplé avec l'endommagement et qui a été spécialement élaboré pour cette étude. Le modèle de comportement a été implémenté dans un code de calcul par éléments finis via une sous-routine. Il permet notamment de simuler le processus de dégradation d'un assemblage. Enfin, ce modèle de comportement a été mis en oeuvre dans des modélisations thermomécaniques de différentes configurations de véhicules test. ABSTRACT : Use of diamond as constitutive component in power electronics devices is an interesting prospect for the high temperature and high power applications. The main challenge of this research work included in the Diamonix program is the study and the elaboration of a single-crystal diamond substrate with electronic quality and its associated packaging. The designed packaging has to resist to temperatures varying between -50°C and 300°C. We contributed to the choice of the connection materials intended to be used in the final test vehicle and which can handle such temperature gaps. In the first part, we present a state-of-the-art of the various materials solutions for extreme temperatures. Following this study, we propose a set of materials which considered as potential candidates for high temperature packaging. Special focus is given for the most critical elements in power electronic assemblies which are metallizations and solders. Once the materials choice carried out, thin substrate metallizations, solders and DBC coatings are studied using nanoindentation and nanoscratch tests. Mechanical tests were also carried out on solders to study their elastoviscoplastic and damage behavior. The experimental results are used as database for the identification of the parameters of the viscoplastic model coupled with a porous damage law, worked out for the case of solders. The behavior model is implemented as a user subroutine UMAT in a FE code to predict the degradation of a 2D power electronic assembly and various materials configuration for a 3D test vehicle

    Experimental and mechanical characterizations of a lead free solder alloy for electronic devices

    Get PDF
    Electronic power modules devices are paramount components in the aeronautical,automotive and military applications. The solder layers are the most critical parts of the module and are usually subjected in their whole life to complex loading conditions. To improve the design task, realistic thermoelastoviscoplastic and lifetime prediction models which can describe efficiently the deformation-damage of the electrical device must be chosen carefully. Some of the most common behavior models are based on the separation between creep and plasticity deformations such as power law, Garofalo, Darveaux… So, to take into account the creep-plasticity interaction, the thermal cycling as well as the hardening-softening effects, unified viscoplastic models are increasingly being used to describe more efficiently the physical state of the material. We propose in this framework a survey of some unified viscoplastic models used in the electronic applications for the viscoplastic modeling of the solder as well as creep-fatigue life prediction rules. The models are used for the characterization of a SnAgCu solder and are briefly compared within tensile, creep data and stabilized responses

    Viscoplastic behavior of diamond die attach subjected to high temperature conditions

    Get PDF
    In power electronic applications, diamond based semi-conductors appears to be a new way to widely increase the capabilities of power electronic converters. The main prospective expected is an increasing in system integration and power capabilities. The Diamonix project concerns the elaboration of a single-crystal diamond substrate with electronic quality and its associated packaging. The designed structure has to resist to temperatures varying between -50°C and +300°C. This paper deals with an experimental and numerical study of the diamond die attach solution. The development of a packaging for diamond component relies in particular on a specific choice of solder’s alloys for the junction die/substrate. To carry out this junction, AuGe and AlSi eutectic alloys were chosen and characterized; the choice of these two kinds of solders i.e. AuGe and AlSi is motivated by the practical elaboration process and the restrictions of hazardous substances (RoHS). The first solder has a melting temperature of 356°C; the second has a higher melting point of 577°C. In this paper, we present some numerical results obtained from FE simulations of two 2D configurations of simplified electronic packaging. The power electronic packaging is composed of a diamond die and a copper metallized Si3N4 ceramic substrate which are brazed together with either AuGe or AlSi solder alloy. To predict the thermomechanical behavior of the solders, a particular constitutive behavior law was implemented as a User MATerial subroutine which is based on a viscoplastic unified McDowell formulation, coupled with porous damage equations. The mechanical law can describe precisely the viscoplastic damage phenomenon of solder subjected to high thermal cycling and to optimize the thermo-mechanical modeling for advanced package developmen

    Mechanical behavior and adhesion of the Ti/Cr/Au metallization scheme on diamond substrate

    Get PDF
    The mechanical properties of a Ti/Cr/Au metallization system deposited on a heavily doped diamond substrate are valuated, first using nano-indentation tests. Various kinds of conditions are adopted, such as small and high force loadings. These tests are completed by in situ scanning electron microscopy observations of the surface. The adhesion of such multilayer on the diamond substrate is assessed using nano-scratching tests. The profiles of the obtained scratches are analyzed to detect any singularities or defects. Finally, a cross-section topography is performed, in order to obtain the cross profile of the scratch, and to determine the scratch hardness parameter of the metallization system. The Ti/Cr/Au metallization system is a potential candidate to play the role of ohmic contact on diamond. Therefore, its adhesion to diamond is important, since the whole power electronic assembly is mainly subjected to thermal cycling during service. The metallization system must adhere well to diamond, so as to resist temperature gradients and thermal strains that are widely observed in extreme thermal conditions. Otherwise, debonding phenomena may occur, and the whole electronic packaging fail

    Mechanical characterization of an Au-Ge solder alloy for high temperature electronic devices

    Get PDF
    This paper presents a description of the mechanical behaviour of an Au-Ge solder under various loading conditions as well as an elastoviscoplastic modelling. In order to achieve the modelling task, the solder is subjected to a set of shear, creep and fatigue loadings in order to determine the behaviour dependence to the temperature and displacement rate and which could be useful to evaluate the degradation of the material. These tests are realized under a wide range of temperatures, loads and displacement rates for modelling purposes. Then, a unified viscoplastic model is applied to predict correctly the material mechanical responses. The model is correlated with the experimental data

    Experimental characterization of the mechanical behavior of two solder alloys for high temperature power electronics applications

    Get PDF
    An experimental investigation of two potential candidate materials for the diamond die attachment is presented in this framework. These efforts are motivated by the need of developing a power electronic packaging for the diamond chip. The performance of the designed packaging relies particularly on the specific choice of the solder alloys for the die/substrate junction. To implement a high temperature junction, AuGe and AlSi eutectic alloys were chosen as die attachment and characterized experimentally. The choice of the AlSi alloy is motivated by its high melting temperature Tm (577°C), its practical elaboration process and the restrictions of hazardous substances (RoHS) inter alia. The AuGe eutectic solder alloy has a melting temperature (356°C) and it is investigated here for comparison purposes with AlSi. The paper presents experimental results such as SEM observations of failure facies which are obtained from mechanical shear as well as cyclic nano-indentation results for the mechanical hardening/softening evaluation under cyclic loading paths

    Identification of damage and fracture modes in power electronic packaging from experimental micro-shear tests and finite element modeling

    Get PDF
    Micro-shear tests are performed in order to characterize the mechanical behavior and the fracture of the chip/metallized ceramic substrate assemblies of power electronic devices. These assemblies are elaborated using three types of junctions: AuGe solder/Au or Ag finish, transient liquid phase bonding (TLPB) AgIn/Ag finish and Ag nanoparticles/Au or Ag finish. The experiments are associated to finite element simulations of both nano-indentation and micro-shear tests. The mechanical behavior of the different assembly interfaces is represented using an in-built cohesive zone model (CZM) available in the user friendly finite element code Abaqus. It is worth noting that the fracture mechanisms observed during the test and service periods of the power electronic packaging are not only due to the debonding at the interfaces but also to the initiation and growth of voids in the joint. Therefore, in addition to the CZM model, Gurson-Tvergaard-Needlmann (GTN) damage model is used in combination with the Rice bifurcation theory to correctly describe the fracture in the joint and, therefore the overall fracture mechanism of the entire junction. The simulation results are compared with the experimental force displacement curves and the SEM observations in order to assess the implemented model

    implémentation d'une loi de comportement basée sur un potentiel viscoplastique couplé à l'endommagement poreux: application à un alliage d'électronique de puissance

    Get PDF
    une loi de comportement viscoplastique à variables internes qui découle d'un potentiel viscoplastique pour les matériaux poreux a été intégrée et implémentée sous Abaqus(R). l'intégration du modèle s'est faite avec un schéma d'Euler implicite combiné à une technique de la direction de recherche. le modéle tient en compte de l'ecrouissage cyclique, fluage, restauration,..et il permet de prendre en compte à la fois de la croissance et de la nucléation de pores dans le matériau. un alliage SnAgCu sollicité au cyclage thermomécanique, est considéré comme matériau test pour la loi de comportemen

    Modeling of void coalescence initiation and its impact on the prediction of material failure

    Get PDF
    In the present paper, Thomason’s criterion is coupled with the well-known Gurson–Tvergaard–Needleman (GTN) damage model and used for the determination of the critical void volume fraction fc , which marks the initiation of the coalescence stage. The onset of void coalescence predicted by Thomason’s criterion is compared to that obtained by using a predefined fc , which is usually fitted on the basis of experimental results, as originally proposed in the GTN model. Comparisons are made in terms of both single finite element simulations and numerical results of deep drawing of a cup
    corecore