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Abstract. Electronic power modules devices are paramount components in the aeronautical,          
automotive and military applications. The solder layers are the most critical parts of the module and 
are usually subjected in their whole life to complex loading conditions. To improve the design task, 
realistic thermoelastoviscoplastic and lifetime prediction models which can describe efficiently the 
deformation-damage of the electrical device must be chosen carefully. Some of the most common 
behavior models are based on the separation between creep and plasticity deformations such as 
power law, Garofalo, Darveaux… So, to take into account the creep-plasticity interaction, the 
thermal cycling as well as the hardening-softening effects, unified viscoplastic models are 
increasingly being used to describe more efficiently the physical state of the material. We propose in 
this framework a survey of some unified viscoplastic models used in the electronic applications for 
the viscoplastic modeling of the solder as well as creep-fatigue life prediction rules. The models are 
used for the characterization of a SnAgCu solder and are briefly compared within tensile, creep data 
and stabilized responses. 

Introduction 

Nowadays, electronic power modules give promising perspectives for entirely electric engines with 
less fuel-dependent systems in aeronautic industry. Typical power module is composed of three 
major components: a semi-conductor chip which may be an IGBT and/or a diode, a metalized 
ceramic substrate and a base plate. These components are soldered to each other’s and positioned 
over a heat sink for thermal management (Fig .1). The dielectric ceramic substrate is double bonded 
with thick copper or aluminum metallization for improving heat spreading. The base plate is made 
also of high thermally conductive material such as AlSiC, copper or aluminum. The brazing is 
achieved using solder alloys considered as one of the principal failure causes in the module due to 
its weaker thermomechanical properties as compared to the other constitutive materials. So, 
regardless of their advantages, the design of the electronic power module devices represents a great 
challenge due to the extreme environmental and operational conditions which involve creep, fatigue 
as well as creep-fatigue interaction and high thermal variation. The high reliability of such 
components is then related to the optimized choice of the constitutive materials of the devices which 
consists basically on the microstructure properties, material compatibility and thermomechanical 
characteristics. Once the components materials are chosen, the experimental data becomes 
necessary for the modeling task in order to reproduce the material behavior in its real environmental 
and assembled state. As indicated earlier, the solder alloy is subjected to a viscoplastic deformation 
due to high temperature levels; the solder behavior must be described by appropriate viscoplastic 
models and lifetime prediction rules.  
 
 
 
 



 

 
Fig. 1: Internal architecture of a typical electronic power module. 

There are in the literature a wide range of models which can be classified within the formulation 
nature of the constitutive equations i.e. coupled or uncoupled deformations. Uncoupled models are 
based on the summation between the plastic and creep deformations considering that there is no 
interaction between them [1]. The plastic deformation follows generally an isotropic-plasticity as 
Ramberg-Osgood model [2] or also a Drucker-Prager plasticity model [3]. The creep deformation 
evolves according to a creep model such as Norton [4], Garofalo [5], Darveaux [6],…The 
uncoupled deformation models are characterized by a simple formulation so they can be easily 
integrated and identified. In the other side, work-hardened solders show creep-plasticity interaction 
especially in the case of cyclic loading and thermal variations i.e. high-to-low or low-to-high 
temperatures. In this case, some kinds of unified thermoelastoviscoplastic models which consider 
that the plasticity and creep effects may be represented by only one time-dependent deformation are 
suitable for the modeling under complex loading conditions. The concept of state variables is also 
introduced in these models [7] in order to reproduce some other physical phenomena such as 
isotropic or kinematic hardening, dynamic and thermal static recovery, ratcheting, aging,… In 
despite of their complex formulation based on stiff, highly coupled first order differential equations, 
unified models are frequently used and are more integrated in the finite element codes. Anand’s 
unified viscoplastic model is usually employed for the deformation modeling of the solder alloys [8-
10]. It’s integrated in a uniaxial form and has a unique scalar state variable which represents the 
resistance to plastic deformation. However, Bauschinger effects and cyclic hardening couldn’t be 
well described [11].  
Other authors such as Krempl, tried to incorporate on its own overstress-based viscoplastic model a 
kinematic state variable. Busso et al, introduced a stress-dependent Arrhenius term to describe more 
efficiently the thermal variation effects [12]. Basaran and Chandaroy formulate a dependency of the 
material viscoplastic behavior with its microstructure changes by introducing a grain size variable 
[13]. McDowell et al, included in their model temperature rate terms in both isotropic and kinematic 
hardening variables for the thermomechanical cycling [14]. Thermodynamical restrictions are also 
demonstrated for thermoplasticity and thermoelastoviscoplasticity cases [15]. Chaboche’s used a 
power law term to describe the plastic flow and may contains several kinematic and isotropic 
hardening variables as well as a plastic strain memory for the saturation state [16]. The model 
proved to be thermodynamically consistent.  
McDowell and Chaboche’s viscoplastic models appear to include the most features that the solder 
joints material can exhibit and to match well with the thermomechanical responses of several 
materials references [17, 18]. We propose in this framework, (i) a description of the formulation of 
these unified models (ii) an integration of the first order differential constitutive equations and its 
implementation in a FE code ABAQUS® (iii) a comparison of the viscoplastic models compared to 
the experimental data and the numerical simulations. 

Formulation of the viscoplastic constitutive equations 

The unification of the inelastic deformations and the description of several physical material states 
are inducing in nature a huge number of material parameters and a coupled set of stiff and first order 
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differential equations which couldn’t be integrated without accurate and stable numerical methods. 
It’s the case for the McDowell and Chaboche’s viscoplastic models. 
McDowell viscoplastic model. Contrary to Anand’s model based on Garofalo hyperbolic sine 
function, McDowell’s model contains a Zener-Hollowman exponential parameter with respect to 
the power law term [19]. The temperature dependency of the model is written as a function of the 
Arrhenius term in the flow law.  
Flow Law 
The inelastic strain rate is determined by the following rate equation: 
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stress  ijijs  . ijs  is the deviatoric stress tensor, ij  the backstress tensor, and   is a thermal 
diffusivity parameter expressed as an Arrhenius function. A is a temperature independent material 
parameter. 
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mT  is the melting temperature, Q the activation energy, and k the Boltzmann’s constant. .  is 

defined as gg   if 0g  else 0g . 
The function F is the Zener-Holloman parameter expressed as follows 

  1exp  NN BF   (4)                                                                           
Knowing that 
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  is a factor which represents the sensibility partition of the strain rate and mainly varied between 0 
and 1. D is an isotropic resistance which is usually constant for solder alloys or proportional to the 
yield stress for copper  RAD 0 [20]. N is a temperature-dependent and 0A temperature-
independent material parameters. In the case of 0 , the flow law is expressed as: 

 
 

 

1

2

3 exp
2

N N
ij ijv vin

ij
ij ij

sS S
A B T

D D J



 

     
     
        

(6)             

Evolution equations 
ij represents the sum of s

ij  and *
ij . 

The evolution equations of the state variables s
ij and *

ij  are written in the following forms 
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We see that the evolution equation is defined as the sum of a hardening term which is proportional 
to in

ij , dynamic recovery terms which are proportional to p  and T  and finally a static thermal 

recovery term which depends on both T  and s
ij  and acts considerably when time-dependent 

mechanisms are dominant (creep, relaxation, recovery,…).  
The isotropic hardening variable   is decomposed into two parts: isoR  corresponds to the variation 
of the yield stress and isob  corresponds to the saturation value of the kinematic hardening 
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  is a temperature dependent parameter which represents the saturation value of  .  
The thermal static recovery terms are expressed in the following forms:              
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The yield stress R and the kinematic hardening saturation b are written respectively as 
  isoRTRR  0

 and   isobTbb  0
 

0R is the initial yield stress. *H , sC , sM , *C , *M , C and M are material parameters. 
In the case of initially isotropic materials, the stress is written as a function of the total strain and the 
inelastic strain tensors respectively ije and in

ij   
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T is the coefficient of thermal expansion  and 0T  is the reference temperature. In the isothermal 

loading case, temperature rate terms are not considered. 
Chaboche’s viscoplastic model. Thanks to its capability to reproduce a realistic behavior of the 
material under complex loading, the Chaboche’s Model becomes one of the most known unified 
viscoplastic model used usually for thermomechanical fatigue behavior of nickel based superalloys 
for turbines blades and other materials with high performance [21]. We present here a formulation 
of the Chaboche’s model with combined kinematic and isotropic hardening variables. The model 
contains also static thermal recovery terms. 
Flow Law 

The inelastic strain rate is determined as follows 
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Let’s see that F takes the form NF  knowing that   0
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Evolution equations 
The evolution equations of the state variables s

ij and *
ij are written in the following forms 
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H is a temperature dependent material parameter. 
For the isotropic hardening equations, R corresponds to  thus, for notations equivalence, we can 
write adopt equation (11) as the equation of evolution of the isotropic hardening variable R.  

Integration and implementation 
Time integration of the constitutive equations. Due to the strong coupling of the first order 
differential equations in the two models, a great care must be taken for the choice of the appropriate 
integration algorithm. The method must show a good accuracy and approved stability. Thus, 
satisfying numerical results may be obtained when semi-implicit Euler method is used with a 
Newton-Raphson iteration scheme [20] or when a fully implicit Euler method is combined with 
Regula Falsi (Pegasus method) and fixed point iteration schemes [22]. So, we’ve adopted these 
methods respectively for McDowell’s and Chaboche’s models. Let’s just remember that for the 
Euler method and for a first order differential equation such as,  ,ij ijy f y t , the unknown function 
y(t) can be calculated knowing that : 

   tttij yyty     1        (17) 
For a fully implicit Euler scheme, is equal to 1. So, the incremental solution depends on the 
evaluated quantities at t + Δt. In the semi-implicit Euler scheme, all the incremental forms of the 
state variables and stress are expressed with respect to the known variables at t, such as 
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But the incremental cumulated inelastic deformation p is expressed as function of the calculated 
variables at t + dt and the aim is to obtain 
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As indicated before,  
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is calculated using the variable at time t + dt. For McDowell’s model, 
the variable p is updated by Newton-Raphson scheme as follows 
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next iteration step k + 1. In this exercise, tol is equal to 10-4. 
In spite of the lack on the predefined viscoplastic models available in Abaqus®, this software offers 
to the user the possibility to work with its own deformation behavior model. The integration 
algorithms for both Chaboche’s and McDowell’s viscoplastic models are then coded in FORTRAN 
language and implemented as UMAT subroutine formats. In the FE code, an asymmetric solver is 
used with a full newton-Raphson iteration scheme for finite element computations. This is due to 
the asymmetric aspect of the jacobian matrix in both two models. 
Identification of the material parameters. Cyclic and asymmetric displacement controlled tests 
are performed at 50°C, 125°C and 180°C under various displacement rates 10-2, 10-3 and 10-
4mm/s. Creep tests are also achieved at 180°C and 125°C with respectively 120 N and 180 N.  The 



 

shear specimen considered (fig. 2(a)) consists of three Ni coated copper plates which are connected 
to each other by means of copper bumps. The copper bumps are brazed to the plates using a 
SnAgCu solder alloy. This specimen is designed to be mounted on an Electroforce® machine test, 
which is rated up to 450 N and can perform precision materials tests including tension/compression 
loading, fatigue and dynamic material characterization. The apparatus is equipped with a furnace 
which can reach temperatures up to 300°C. Displacements are measured by means of an axial 
extensometer  
 

a)                b)  
Fig. 2: Shear specimen used for identification procedure (a) experimental configuration 

(b) corresponding FE model. 
 

Thermal properties 
Thermal conductivity λ (W/m.K) 33 

Density ρ (Kg/mm3) 7.36×10-6 
Specific heat Cp (J.K-1) 200 

Coefficient  of thermal expansion α (ppm/K) 3×10-5 
Table1: Thermal properties for SnAgCu. 

McDowell’s Model parameters  Chaboche’s Model parameters 
Temperature  25°C 125°C 180°C  Temperature  25°C 125°C 180°C 

n 3 - -  R0(MPa) 12 5 4.15 
A 5000 - -  C 410.5 230 76 
B 0.001 - -  b(MPa) 5 5.21 5.71 
C 250 274 287    H*(MPa) 1200 1114.1 923 

D(MPa) 4 - -  H 96 83.2 68.1 
  H*(MPa) 64 87 99.2  Cs(s-1MPa1-Ms) 5×10-4 7.4×10-4 1.2×10-3 

w 0.5 - -  C*(s-1MPa1-Ms) 3×10-2 5.9×10-2 6×10-2 
Cs 0.079 - -  Ms 3.5 3.9 3.9 

 C*(MPa/s) 600 - -  M* 1.4 1.75 1.2 
 Ms 5 - -    224 176 149 
M* 5 - -  μ' 7.3 7.6 8.7 

Q(J/mol) 27000 - -      
R0(MPa) 12 5 1.5      
 b0(MPa) 8.3 7.2 6      

  150 75 38      
μ' 6 6.5 9.3      

Table2: Identified material parameters for the SnAgCu. 

The Least square procedure for the parametric identification was applied as a Python script in 
combination with the FE code Abaqus® and the UMAT subroutine. The figure 2(b) shows a half 
symmetric model of the specimen considered in the finite element computations.  
Copper plates are considered as an elastoplastic material modeled with a combined hardening 
elastoplastic Chaboche model. Elastic modulus and Poisson ratio of SnAgCu are taken respectively 



 

as E (MPa) = 41632 - 19.4 T (°C) and v = 0.33. Thermal properties of the solder are given in table 
1. The identified material parameters of the SnAgCu solder alloy are given in the table 2 for 
Chaboche’s and McDowell’s models. 
Contrarily to the Chaboche’s model where all parameters are temperature-dependent, McDowell 
model contains only six temperature-dependent coefficients i.e. E, v, C, H*, b0, R0, μ' and χ . All the 
temperature dependent parameters may be expressed as functions of temperature.  
Numerical results and discussions. Experimental displacement profiles are used in the FE code as 
imposed loading to extract the SnAgCu mechanical responses. Following all the displacement 
imposed profiles, the displacement rate is not constant during the tests and varies from 10-2 to 10-5 
mm/s.  

a)        b)  
Fig. 3: Creep tests (a) 180N at 125°C (b) 120N at 180°C 

a)        b)  
Fig. 4: Displacement controlled tests (a) Symmetric 10-2mm/s at 180°C (b) Asymmetric 10-3mm/s at 

125°C. 
Figure 3 shows the evolution of the displacement as a function of the time for different creep tests at 
125 and 180°C. The two identified laws are in good agreement with the experimental data. For more 
complex cyclic loading, we can see the load-displacement curves (figures 4), where the assembled 
specimen tends to softens under. It saturates quickly whatever the imposed displacement rate but 
keep a nearly constant hardening behavior. Viscoplastic behavior of SnAgCu doesn’t vary so much 
and still stable even when temperature changes. 
Moreover, in low temperature ranges and in comparison with McDowell’s model, Chaboche’s 
model appears to fit well the asymmetric data at 25°C in spite of the error at the end of loading. But 
at high temperatures, numerical results from McDowell’s model correlate well with experimental 
data at 125°C and 180°C which is approved by the use of an activation energy term. In fact, this 
term intervenes in the flow and the evolution equations as well which is not the case in the 
Chaboche’s model.  

Summary 

Thermoviscoplastic behavior of a lead-free solder SnAgCu is characterized using several 
mechanical tests at three different temperatures. The mechanical responses are used to identify two 
unified viscoplastic models. Numerical results of the viscoplastic models show mainly good 
correlation with experimental data especially at high temperature, when recovery terms dominate. In 
the high temperature range, the use of activation energy term appears to produce more accurate 



 

results but this fact had to be verified by thermomechanical fatigue tests when the influence of 
temperature rate is not negligible too. Also, SnAgCu cyclic behavior must be investigated using 
fatigue tests to understand the softening behavior and to quantify the damage in the material for the 
lifetime prediction as well. 
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