19 research outputs found

    GGE BIPLOT ANALYSIS OF YIELD STABI LITY FOR ANDEAN DRY BEAN ACCESSIONS GROWN UNDER DIFFERENT ABIOTIC STRESS REGIMES IN TANZANIA

    Get PDF
    Large seeded Andean dry beans (Phaseolus vulgaris L.) are most preferred in Africa. However, low soil fertility and increasing drought stress conditions due to climate change are among the challenges faced by farmers in this region. The purpose of this study was to identify Andean genotypes with yield stability and to identify the best environments for selection of this trait. GGE-Biplot analysis was used to examine 183 Andean bean genotypes in Tanzania. Results indicated significant environment (E), genotype (G) and genotype x environment (GE) effects for seed yield. The environment explained 46%, genotype 20%, and GE 34% of the total (G + E + GE) variation. Two principal components explained 41.21% (PC1) and 26.35% (PC2) of GGE sum of squares. The Andean genotypes, ADP-102 (Jessica)- purple mottle, large seed, bush plant habit, released by Selian Agriculture Research Institution (ARI) in Tanzania; ADP-220 (G5625)- red, large seed, vine plant habit, from Central America; ADP-276 (G13654) - brown, medium seed, vine, from Mexico; and ADP-648 (‘Red Kloud’) large red kidney, with bush plant habit, were stable across environments and can be recommended for general adaptation across environments. An individual location for selection for yield stability was not identified, thus justifying the continued need for multiple test sites

    GGE BIPLOT ANALYSIS OF YIELD STABI LITY FOR ANDEAN DRY BEAN ACCESSIONS GROWN UNDER DIFFERENT ABIOTIC STRESS REGIMES IN TANZANIA

    Get PDF
    Large seeded Andean dry beans (Phaseolus vulgaris L.) are most preferred in Africa. However, low soil fertility and increasing drought stress conditions due to climate change are among the challenges faced by farmers in this region. The purpose of this study was to identify Andean genotypes with yield stability and to identify the best environments for selection of this trait. GGE-Biplot analysis was used to examine 183 Andean bean genotypes in Tanzania. Results indicated significant environment (E), genotype (G) and genotype x environment (GE) effects for seed yield. The environment explained 46%, genotype 20%, and GE 34% of the total (G + E + GE) variation. Two principal components explained 41.21% (PC1) and 26.35% (PC2) of GGE sum of squares. The Andean genotypes, ADP-102 (Jessica)- purple mottle, large seed, bush plant habit, released by Selian Agriculture Research Institution (ARI) in Tanzania; ADP-220 (G5625)- red, large seed, vine plant habit, from Central America; ADP-276 (G13654) - brown, medium seed, vine, from Mexico; and ADP-648 (‘Red Kloud’) large red kidney, with bush plant habit, were stable across environments and can be recommended for general adaptation across environments. An individual location for selection for yield stability was not identified, thus justifying the continued need for multiple test sites

    Description of Baetao-Manteiga 41 and ‘Yunguilla’ superior Andean common beans for Tanzanian production environments

    Get PDF
    An international effort was initiated with the evaluation of a diverse set of largeseeded Andean common beans (Phaseolus vulgaris L.), the Andean Diversity Panel, in sub-Saharan Africa. Several entries in the panel have been selected for extensive characterization on the basis of high performance acrossmultiple location × year trials in Tanzania—conducted both on station and on farm. Baetao- Manteiga 41, tested asADP-190, has a commercialKablanketi (light purple speckled) seed type, and ‘Yunguilla’, tested as ADP-447, has a commercial Calima (red mottled) seed type. Both lines exhibited yield stability, vigorous growth under low fertility conditions, angular leaf spot resistance, andmoderate common bacterial blight resistance; Yunguilla also possessed rust resistance. These two lines were tested, selected, and characterized cooperatively by Sokoine University of Agriculture (SUA), the Tanzanian Agricultural Research Institute (TARI), the USDA-ARS, and the Agricultural Research Council (ARC) of South Africa, and in collaboration with local farmers in Tanzania

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions
    corecore