7 research outputs found

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Clinical Utility of Next-Generation Sequencing for Oncogenic Mutations in Patients with Acute Myeloid Leukemia Undergoing Allogeneic Stem Cell Transplantation

    No full text
    To determine the association of somatic mutations in acute myeloid leukemia (AML) with risk of relapse after allogeneic hematopoietic stem cell transplantation (alloHSCT), we retrospectively studied pre-transplant genetic profiles obtained from next generation sequencing of 26 genes in 112 adult AML patients who underwent alloHSCT. Univariable and multivariable regression analyses were used to assess the association between the presence of a pathogenic mutation and risk of relapse after alloHSCT. Eighty-six percent (96/112) of patients had at least 1 pathogenic mutation. Mutations in TP53, WT1, and FLT3-ITD were associated with an increased risk of relapse after alloHSCT (adjusted HR [aHR] 2.90, P = .009, aHR 2.51, P = .02, and aHR 1.83, P = .07, respectively). DNMT3A mutation in the absence of FLT3-ITD and NPM1 mutations was associated with a lower relapse risk (aHR 0.22, P = .04). Comparison of pre- and post-alloHSCT genetic profiles showed clonal evolution in 6/6 patients, including acquisition of actionable mutations in 4 patients. In summary, genetic profiling is useful for assessing relapse risk in AML patients undergoing alloHSCT, and may identify patients in need of strategies to reduce this risk. Clonal evolution is present at post-alloHSCT relapse and repeat genetic profiling may uncover acquired actionable mutations

    Treatment, Outcomes, and Challenges of Newly Diagnosed AML in Children and Adolescents

    No full text

    Overview of JET results

    No full text
    Since the last IAEA conference, the scientific programme of JET has focused on the qualification of the integrated operating scenarios for ITER and on physics issues essential for the consolidation of design choices and the efficient exploitation of ITER. Particular attention has been given to the characterization of the edge plasma, pedestal energy and edge localized modes (ELMs), and their impact on plasma facing components (PFCs). Various ELM mitigation techniques have been assessed for all ITER operating scenarios using active methods such as resonant magnetic field perturbation, rapid variation of the radial field and pellet pacing. In particular, the amplitude and frequency of type I ELMs have been actively controlled over a wide parameter range (q95 = 3-4.8, βN ≥ 3.0) by adjusting the amplitude of the n = 1 external perturbation field induced by error field correction coils. The study of disruption induced heat loads on PFCs has taken advantage of a new wide-angle viewing infrared system and a fast bolometer to provide a detailed account of time, localization and form of the energy deposition. Specific ITER-relevant studies have used the unique JET capability of varying the toroidal field (TF) ripple from its normal low value δBT = 0.08% up to δBT = 1% to study the effect of TF ripple on high confinement-mode plasmas. The results suggest that δBT < 0.5% is required on ITER to maintain adequate confinement to allow QDT = 10 at full field. Physics issues of direct relevance to ITER include heat and toroidal momentum transport, with experiments using power modulation to decouple power input and torque to achieve first experimental evidence of inward momentum pinch in JET and determine the threshold for ion temperature gradient driven modes. Within the longer term JET programme in support of ITER, activities aiming at the modification of the JET first wall and divertor and the upgrade of the neutral beam and plasma control systems are being conducted. The procurement of all components will be completed by 2009 with the shutdown for the installation of the beryllium wall and tungsten divertor extending from summer 2009 to summer 2010

    Overview of JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower \u3c1 17 and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower \u3c1 17 and \u3bd 17 and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with 3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95 values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2MWm 122) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling

    Inadequacy of technology and innovation systems at the periphery

    No full text
    Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. Our understanding of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly. The extrapolation of ELM size to ITER has been re-evaluated. Neoclassical tearing modes have been shown to be meta-stable in JET, and their beta limits can be raised by destabilization (modification) of sawteeth by ion cyclotron radio frequency heating (ICRH). Alpha simulation experiments with ICRH accelerated injected 4 (He) beam ions provide a new tool for fast particle and magnetohydrodynamic studies, with up to 80-90% of plasma heating by fast 4 He ions. With or without impurity seeding, a quasi-steady-state high confinement (H(98) = 1), high density(n(e)/n(GW) = 0.9-1) and high beta (betaN = 2) ELMy H-mode has been achieved by operating near the ITER triangularity ( similar to 0.40-0.5) and safety factor (q(95) similar to 3), at Z(eff) similar to 1.5-2. In advanced tokamak (AT) scenarios, internal transport barriers (ITBs) are now characterized in real time with a new criterion, rhoT(*). Tailoring of the current profile with T lower hybrid current drive provides reliable access to a variety of q profiles, lowering access power for barrier formation. Rational q surfaces appear to be associated with ITB formation. Alfven cascades were observed in reversed shear plasmas, providing identification of q profile evolution. Plasmas with 'current holes' were observed and modelled. Transient high confinement AT regimes with H(89) = 3.3, beta(N) = 2.4 and ITER-relevant q < 5 were achieved with reversed magnetic shear. Quasi-stationary ITBs are developed with full non-inductive current drive, including similar to 50% bootstrap current. A record duration of ITBs was achieved, up to 11 s, approaching the resistive time. For the first time, pressure and current profiles of AT regimes are controlled by a real-time feedback system, in separate experiments. Erosion and co-deposition studies with a quartz micro-balance show reduced co-deposition. Measured divertor thermal loads during disruptions in JET could modify ITER assumptions
    corecore