302 research outputs found

    Phase II trial of dexverapamil and epirubicin in patients with non-responsive metastatic breast cancer.

    Get PDF
    Agents capable of reversing P-glycoprotein-associated multidrug resistance have usually failed to enhance chemotherapy activity in patients with solid tumours. Based on its toxicity profile and experimental potency, dexverapamil, the R-enantiomer of verapamil, is considered to be promising for clinical use as a chemosensitizer. The purpose of this early phase II trial was to evaluate the effects of dexverapamil on epirubicin toxicity, activity and pharmacokinetics in patients with metastatic breast cancer. A two-stage design was applied. Patients first received epirubicin alone at 120 mg m(-2) i.v. over 15 min, repeated every 21 days. Patients with refractory disease continued to receive epirubicin at the same dose and schedule but supplemented with oral dexverapamil 300 mg every 6 h x 13 doses. The Gehan design was applied to the dexverapamil/epirubicin cohort of patients. Thirty-nine patients were entered on study, 25 proceeded to receive epirubicin plus dexverapamil. Dexverapamil did not increase epirubicin toxicity. The dose intensity of epirubicin was similar when used alone or with dexverapamil. In nine intrapatient comparisons, the area under the plasma concentration-time curve (AUC) of epirubicin was significantly reduced by dexverapamil (mean 2968 vs 1901 microg ml[-1] h[-1], P= 0.02). The mean trough plasma levels of dexverapamil and its major metabolite nor-dexverapamil were 1.2 and 1.5 microM respectively. The addition of dexverapamil to epirubicin induced partial responses in 4 of 23 patients evaluable for tumour response (17%, CI 5-39%, s.e.P 0.079). The remissions lasted 3, 8, 11 and 11+ months. These data suggest that the concept of enhancing chemotherapy activity by adding chemosensitizers may function not only in haematological malignancies but also in selected solid tumours. An increase in the AUC and toxicity of cytotoxic agents does not seem to be a prerequisite for chemosensitizers to enhance anti-tumour activity

    The Effects on Caffeine on Cycling Performance in College-Aged Males

    Get PDF
    Please download pdf version here

    Bosonic Analogue of Dirac Composite Fermi Liquid

    Full text link

    Stellar spectroscopy: Fermions and holographic Lifshitz criticality

    Full text link
    Electron stars are fluids of charged fermions in Anti-de Sitter spacetime. They are candidate holographic duals for gauge theories at finite charge density and exhibit emergent Lifshitz scaling at low energies. This paper computes in detail the field theory Green's function G^R(w,k) of the gauge-invariant fermionic operators making up the star. The Green's function contains a large number of closely spaced Fermi surfaces, the volumes of which add up to the total charge density in accordance with the Luttinger count. Excitations of the Fermi surfaces are long lived for w <~ k^z. Beyond w ~ k^z the fermionic quasiparticles dissipate strongly into the critical Lifshitz sector. Fermions near this critical dispersion relation give interesting contributions to the optical conductivity.Comment: 38 pages + appendices. 9 figure

    Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (<it>PLK1</it>) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy.</p> <p>Methods</p> <p>We examined the expression of <it>PLK1 </it>mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting <it>PLK1 </it>mRNA on tumor-initiating cells was evaluated using tumor sphere assays.</p> <p>Results</p> <p>Analysis of gene expression in two independent cohorts revealed that <it>PLK1 </it>mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (<it>SOX2</it>) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells.</p> <p>Conclusions</p> <p>Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation.</p

    Vinorelbine alternating oral and intravenous plus epirubicin in first-line therapy of metastatic breast cancer: results of a multicentre phase II study

    Get PDF
    The combination of intravenous (i.v.) vinorelbine and epirubicin is highly active in the treatment of metastatic breast cancer (MBC). In an effort to improve patient convenience, we investigated a regimen alternating i.v. and oral vinorelbine in combination with epirubicin as first-line chemotherapy of patients with MBC. In all, 49 patients with MBC received, as first-line treatment, a combination regimen consisting of i.v. vinorelbine 25 mg m−2 plus epirubicin 90 mg m−2 given on day 1, and oral vinorelbine 60 mg m−2 on day 8 (or day 15 if neutrophils <1500 mm−3) every 3 weeks, in an open-label, multicentre phase II study. Treatment was to be repeated for a maximum of six cycles. The study population had a median age of 55 years, half of the patients had received prior adjuvant chemotherapy and 86% presented a visceral involvement. In all, 25 responses were documented and validated by an independent panel review, yielding response rates of 51% (95% CI: 36–66) in the 49 enrolled patients and 54.5% (95% CI: 39–70) in the 44 evaluable patients. Median durations of progression-free survival and survival were 8 and 20 months, respectively. Neutropenia was the main dose-limiting toxicity, but complications were uncommon, four patients having experienced febrile neutropenia and six having developed neutropenic infection. Other frequently reported adverse events included stomatitis, nausea and vomiting, which were rarely severe. No toxic death was reported. Among patients who received six cycles, global score of quality of life remained stable. This regimen alternating oral and i.v. vinorelbine in combination with epirubicin is effective and safe. Oral vinorelbine on day 8 offers greater convenience to the patient, and decreases the need for i.v. injection and reduces time spent in hospital. Therefore, oral vinorelbine is a convenient alternative to the i.v. form in combination regimens commonly used to treat MBC

    Microenvironmental Influence on Pre-Clinical Activity of Polo-Like Kinase Inhibition in Multiple Myeloma: Implications for Clinical Translation

    Get PDF
    Polo-like kinases (PLKs) play an important role in cell cycle progression, checkpoint control and mitosis. The high mitotic index and chromosomal instability of advanced cancers suggest that PLK inhibitors may be an attractive therapeutic option for presently incurable advanced neoplasias with systemic involvement, such as multiple myeloma (MM). We studied the PLK 1, 2, 3 inhibitor BI 2536 and observed potent (IC50<40 nM) and rapid (commitment to cell death <24 hrs) in vitro activity against MM cells in isolation, as well as in vivo activity against a traditional subcutaneous xenograft mouse model. Tumor cells in MM patients, however, don't exist in isolation, but reside in and interact with the bone microenvironment. Therefore conventional in vitro and in vivo preclinical assays don't take into account how interactions between MM cells and the bone microenvironment can potentially confer drug resistance. To probe this question, we performed tumor cell compartment-specific bioluminescence imaging assays to compare the preclinical anti-MM activity of BI 2536 in vitro in the presence vs. absence of stromal cells or osteoclasts. We observed that the presence of these bone marrow non-malignant cells led to decreased anti-MM activity of BI 2536. We further validated these results in an orthotopic in vivo mouse model of diffuse MM bone lesions where tumor cells interact with non-malignant cells of the bone microenvironment. We again observed that BI 2536 had decreased activity in this in vivo model of tumor-bone microenvironment interactions highlighting that, despite BI 2536's promising activity in conventional assays, its lack of activity in microenvironmental models raises concerns for its clinical development for MM. More broadly, preclinical drug testing in the absence of relevant tumor microenvironment interactions may overestimate potential clinical activity, thus explaining at least in part the gap between preclinical vs. clinical efficacy in MM and other cancers
    corecore