323 research outputs found

    Sulfur-house operation /

    Get PDF
    C38

    Studying Rate Control Methods for UHDTV Delivery Using HEVC

    Get PDF
    Since the early video coding standardisation efforts, rate control has been considered essential for almost any application, and has therefore been extensively studied. With the advent of improved video coding standards, such as the current stateof-the-art High Efficiency Video Coding (HEVC) standard, and the introduction of advanced flexible coding tools, previous Rate-Distortion (RD) models used for rate control have become obsolete. To address this issue, some rate control methods have been recently proposed specifically for HEVC which introduce many useful features, such as a robust correspondence between the rate and Lagrange multiplier . However, when applying these rate control methods on sequences in the new Ultra High Definition Television (UHDTV) format, degraded coding performance was observed. In this paper, an analysis of the state-of-the-art HEVC rate control method was performed and two directions for its improvement were evaluated. These improvements target frame-level bit-allocation and model parameter initialisation. When compared to the rate control method implemented in the HEVC reference software, these improvements result in reduced BDrate losses of 3:1% and 2:1%, versus the 8:8% provided by the reference algorithm. Moreover, the proposed improvements improve the accuracy in hitting the target bit-rate./p

    Two-Pass Rate Control for Improved Quality of Experience in UHDTV Delivery

    Get PDF

    Estimation of Rate Control Parameters for Video Coding Using CNN

    Get PDF
    Rate-control is essential to ensure efficient video delivery. Typical rate-control algorithms rely on bit allocation strategies, to appropriately distribute bits among frames. As reference frames are essential for exploiting temporal redundancies, intra frames are usually assigned a larger portion of the available bits. In this paper, an accurate method to estimate number of bits and quality of intra frames is proposed, which can be used for bit allocation in a rate-control scheme. The algorithm is based on deep learning, where networks are trained using the original frames as inputs, while distortions and sizes of compressed frames after encoding are used as ground truths. Two approaches are proposed where either local or global distortions are predicted

    Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation

    Get PDF
    To understand better the adaptation strategies of intra-annual radial growth in Pinus halepensis and Pinus sylvestris to local environmental conditions, we examined the seasonal rhythm of cambial activity and cell differentiation at tissue and cellular levels. Two contrasting sites differing in temperature and amount of precipitation were selected for each species, one typical for their growth and the other represented border climatic conditions, where the two species coexisted. Mature P. halepensis trees from Mediterranean (Spain) and sub-Mediterranean (Slovenia) sites, and P. sylvestris from sub-Mediterranean (Slovenia) and temperate (Slovenia) sites were selected. Repeated sampling was performed throughout the year and samples were prepared for examination with light and transmission electron microscopes. We hypothesized that cambial rhythm in trees growing at the sub-Mediterranean site where the two species co-exist will be similar as at typical sites for their growth. Cambium in P. halepensis at the Mediterranean site was active throughout the year and was never truly dormant, whereas at the sub-Mediterranean site it appeared to be dormant during the winter months. In contrast, cambium in P. sylvestris was clearly dormant at both sub-Mediterranean and temperate sites, although the dormant period seemed to be significantly longer at the temperate site. Thus, the hypothesis was only partly confirmed. Different cambial and cell differentiation rhythms of the two species at the site where both species co-exist and typical sites for their growth indicate their high but different adaptation strategies in terms of adjustment of radial growth to environmental heterogeneity, crucial for long-term tree performance and survival

    Libri novi

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43275/1/11046_2005_Article_BF02089133.pd

    saeRS and sarA Act Synergistically to Repress Protease Production and Promote Biofilm Formation in Staphylococcus aureus

    Get PDF
    Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (Ī”saeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and Ī”saeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level

    CSF from Parkinson disease Patients Differentially Affects Cultured Microglia and Astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive and abnormal accumulation of alpha-synuclein (Ī±-synuclein) is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for Ī±-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; Ī±-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging.</p> <p>Results</p> <p>After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in Ī±-synuclein content by day 4 compared to other treatments (p ā‰¤ 0.02). In microglia only, Ī±-synuclein aggregated and redistributed to peri-nuclear locations.</p> <p>Conclusions</p> <p>Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and Ī±-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.</p
    • ā€¦
    corecore