42 research outputs found

    Characterisation of the Immunophenotype of Dogs with Primary Immune-Mediated Haemolytic Anaemia

    Get PDF
    Immune-mediated haemolytic anaemia (IMHA) is reported to be the most common autoimmune disease of dogs, resulting in significant morbidity and mortality in affected animals. Haemolysis is caused by the action of autoantibodies, but the immunological changes that result in their production have not been elucidated.To investigate the frequency of regulatory T cells (Tregs) and other lymphocyte subsets and to measure serum concentrations of cytokines and peripheral blood mononuclear cell expression of cytokine genes in dogs with IMHA, healthy dogs and dogs with inflammatory diseases.19 dogs with primary IMHA, 22 dogs with inflammatory diseases and 32 healthy control dogs.Residual EDTA-anti-coagulated blood samples were stained with fluorophore-conjugated monoclonal antibodies and analysed by flow cytometry to identify Tregs and other lymphocyte subsets. Total RNA was also extracted from peripheral blood mononuclear cells to investigate cytokine gene expression, and concentrations of serum cytokines (interleukins 2, 6 10, CXCL-8 and tumour necrosis factor α) were measured using enhanced chemiluminescent assays. Principal component analysis was used to investigate latent variables that might explain variability in the entire dataset.There was no difference in the frequency or absolute numbers of Tregs among groups, nor in the proportions of other lymphocyte subsets. The concentrations of pro-inflammatory cytokines were greater in dogs with IMHA compared to healthy controls, but the concentration of IL-10 and the expression of cytokine genes did not differ between groups. Principal component analysis identified four components that explained the majority of the variability in the dataset, which seemed to correspond to different aspects of the immune response.The immunophenotype of dogs with IMHA differed from that of dogs with inflammatory diseases and from healthy control dogs; some of these changes could suggest abnormalities in peripheral tolerance that permit development of autoimmune disease. The frequency of Tregs did not differ between groups, suggesting that deficiency in the number of these cells is not responsible for development of IMHA

    Etude par spectroscopie de fluoresence de molecules a fort caractere de transfert de charge

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    CD4+CD25+ Regulatory T Cells Control Induction of Autoimmune Hemolytic Anemia.

    Full text link
    Abstract Autoimmune Hemolytic anemia (AIHA) is the result of increased destruction of red blood cells (RBCs) due to the production of antibodies against self antigens. Anemia can be severe and life-threatening. The underlying mechanism of autoimmunity is the result of breakdown of immune tolerance, but the molecular and cellular basis for the induction of AIHA remains to be fully defined. To further our understanding of mechanisms that trigger AIHA, we used the Marshall-Clarke and Playfair model of murine AIHA. Anemia is induced by repeated injection of rat RBCs resulting in development of erythrocyte autoantibodies as well as rat-specific immunoglobulins. The severity of the autoimmune disease is strain dependent. We found that in about 20–30% of C57/Bl6 mice repeatedly immunized with washed rat RBCs, there is breakdown of tolerance and development of pathogenic autoantibodies resulting in decreased hematocrit, reticulocytosis and increased destruction of transfused syngeneic mouse RBCs. To identify the immunological factors contributing to the incidence of AIHA, we analyzed the role of specific T regulatory subsets in controlling AIHA in C57/Bl6 mice. Previous studies documented that depletion of selected regulatory CD4+ T cell subsets (CD25+, CD62L+ and CD45RBlow) can induce different degrees of autoimmune disorders. However, the nature of the regulatory T cell subset in the induction of AIHA has not yet been studied. To test the role of CD25+ T regulatory cells in the induction of AIHA, 10 week old C57/Bl6 mice (n=10) were treated with 500 μg of anti-CD25 antibody six hours prior to immunization with rat RBCs on a weekly basis for four weeks. Following this repeated challenge the incidence of AIHA increased from 20 to 90%. Treatment with isotype control antibody prior to weekly injections of rat RBCs for four weeks resulted in the expected 20% incidence of AIHA. Furthermore, weekly treatment with anti-CD25 alone for four weeks did not result in development of AIHA, indicating that the depletion of CD25 cells in combination with rat RBC stimulus was important for the development AIHA. To test whether anti-CD25 treatment also increased the levels of autoantibodies directed against other non-erythroid antigens, we measured the levels of antibodies to double stranded DNA (anti-ds DNA) characteristic of systemic autoimmune disease and found significantly elevated levels in anti-CD25/rat RBC immunized mice, as compared to control mice treated with rat RBCs alone. Interestingly, treatment with anti-CD25 alone did not result in increased levels of anti-ds DNA, indicating that selective depletion of CD25+ does not result in the development of autoimmunity and that an additional signal is required to activate autoreactivity. In addition, the levels of alloantibodies against rat RBCs in anti-CD25/rat RBC immunized mice were elevated as compared to mice treated with rat RBCs alone, consistent with a heightened immune hypersensitive state. Importantly, adoptive transfer of purified splenic population of CD4+CD25+ from mice that had undergone weekly injections of rat erythrocytes for 12 weeks into naïve C57/Bl6 mice (n=5) prevented the induction of autoantibody production whereas transfer of CD4+CD25-T cells into naïve mice (n=6) significantly elevated the autoantibody levels following weekly immunization with rat RBCs. These findings emphasize an important suppressive role for CD4+CD25+ in prevention of AIHA. Altogether, our data provide new insight regarding the mechanism for breakdown of tolerance in antibody-mediated autoimmunes disease which may help to establish therapeutic strategies for treatment of AIHA.</jats:p

    CD4+CD25+ regulatory T cells control induction of autoimmune hemolytic anemia

    No full text
    Autoimmune hemolytic anemia (AIHA) is the result of increased destruction of red blood cells (RBCs) due to the production of autoantibodies, and it can be life-threatening. To study the mechanisms that trigger AIHA, we used the Marshall-Clarke and Playfair model of murine AIHA, in which mice repeatedly immunized with rat RBCs develop erythrocyte autoantibodies as well as rat-specific alloantibodies. We analyzed the role of CD25+ T-regulatory subsets in controlling AIHA in C57/Bl6 mice using antibody depletion studies. Treatment with anti-CD25 antibody but not isotype control prior to immunization with rat RBCs increased the incidence of AIHA from 30% to 90%. Adoptive transfer of purified splenic population of CD4+CD25+ but not CD4+CD25- cells from immunized mice into naive recipients prevented the induction of autoantibody production. Altogether, our data establish a critical role for CD4+CD25+ cells for control of AIHA, which may help to establish therapeutic strategies for treatment of AIHA
    corecore