909 research outputs found
Dalla grazia cortigiana alla ragion di stato cattolica, ovvero un percorso della legittimazione politica da Carlo V a Filippo II
Milano seconda Roma: indagini sulla costruzione dell´identità cittadina nell´età di Filippo II
Immobilization of proteins in silica gel: Biochemical and biophysical properties
The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques
Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study
Hemoglobin exhibits allosteric structural changes upon ligand binding due to
the dynamic interactions between the ligand binding sites, the amino acids
residues and some other solutes present under physiological conditions. In the
present study, the dynamical and quaternary structural changes occurring in two
unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures
of adult human hemoglobin were investigated with molecular dynamics. It is
shown that, in the sub-microsecond time scale, there is no marked difference in
the global dynamics of the amino acids residues in both the oxy- and the deoxy-
forms of the individual structures. In addition, the R, R2 are relatively
stable and do not present quaternary conformational changes within the time
scale of our simulations while the T structure is dynamically more flexible and
exhibited the T\rightarrow R quaternary conformational transition, which is
propagated by the relative rotation of the residues at the {\alpha}1{\beta}2
and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B
DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ
High- and low-affinity PEGylated hemoglobin-based oxygen carriers: differential oxidative stress in a Guinea pig transfusion model
Hemoglobin (Hb)-based oxygen carriers (HBOCs) are an investigational replacement for blood transfusions and are known to cause oxidative damage to tissues. To investigate the correlation between their oxygen binding properties and these detrimental effects, we investigated two PEGylated HBOCs endowed with different oxygen binding properties - but otherwise chemically identical - in a Guinea pig transfusion model. Plasma samples were analyzed for biochemical markers of inflammation, tissue damage and organ dysfunction; proteins and lipids of heart and kidney extracts were analyzed for markers of oxidative damage. Overall, both HBOCs produced higher oxidative stress in comparison to an auto-transfusion control group. Particularly, tissue 4-hydroxynonenal-adducts, tissue malondialdehyde adducts and plasma 8-oxo-2'-deoxyguanosine exhibited significantly higher levels in comparison with the control group. For malondialdehyde adducts, a higher level in the renal tissue was observed for animals treated with PEG-Hboxy, hinting at a correlation between the HBOCs oxygen binding properties and the oxidative stress they produce. Moreover, we found that the high-affinity HBOC produced greater tissue oxygenation in comparison with the low affinity one, possibly correlating with the higher oxidative stress it induced
Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design
Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the β-subunit (F41). We therefore replaced this residue with a tyrosine (βF41Y, Hb Mequon). The βF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, βF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the β-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in βF41Y. NO bioavailability was enhanced in βF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the β-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product.</jats:p
Head Ward Nurse Core Competencies: A Mixed-Method Study
Introduction: Head ward nurse (HWN) is the one who, within a social and health care organization, plays a key role in the functioning of the ward, organizing work and that co-workers.This study aims to identify the HWN's core competencies, mapping and grading them according to the level considered most strategic and making them evident through the configuration of a conceptual map defined by the Balanced Scorecard (BSC) model.
Methods: This study was conducted in a mixed-method methodology, with a qualitative and quantitative exploratory sequential approach. In the quantitative part, by using the administration of surveys of consecutive convenience samples consisting in doctors, nurses, healthcare worker assistants and therapists staff from the surgical department of the Azienda Unità Sanitaria Locale (AUSL) of Piacenza Italy, 39% of the population of possible respondents for the qualitative part. Another sample of only nurses ward manager from surgery department of AUSL, which is the Local Health Authority of Piacenza, located in the Emilia-Romagna region of northern Italy. It was identified for the quantitative part, 100% of the population of possible respondents.
Results: The BSC makes it possible to identify, represent, and measure the performance of nurses especially with a view to enabling the attainment of skills deemed most significant, to be able to have a balance of them within the professional's portfolio, to ensure the presence of appropriate skills in care settings, and to be able to represent a graduation and eventual measurement of them.
Conclusions: The definition, mapping, graduation and representation of the core competencies of the HWN according to the BSC model, allow to make explicit the professional act in order to maintain or improve the exercised performances of the function as well as to lay the basis for their possible evaluation
Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase
A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5′-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial “strain” energy on the orientation of the cyclic intermediate to control its trajectory. In addition the “strain” energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions
The Energy Landscape of Human Serine Racemase
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site
- …
