1,193 research outputs found

    Digital assisted soft tissue sculpturing (DASS) technique for immediate loading pink free complete arch implant prosthesis

    Get PDF
    Purpose: To introduce a digitally assisted technique to achieve the ideal soft and bone tissue interface for anatomic-driven pink free implant supported fixed prosthesis, and prefabricate an interim prosthesis to be used the day of the surgery as a prosthetic scaffold to condition the healing Methods: The digital assisted soft tissue sculpturing (DASS) technique allows the previsualization of the ideal soft and bone tissue interface and fabricate a computer aided design computer aided manufacturing (CAD-CAM) anatomic-driven pink free complete arch interim prosthesis for the immediate loading. Bone and soft tissue interface as well as the interim prosthesis design are performed in a segmented multiple standard tessellation language (STL) file embedding the bone anatomy, the intraoral surface anatomy (dental and soft tissue), the digital wax-up and the implant positioning. The interim prosthesis is used as a prosthetic scaffold to guide the soft and bone tissue surgical sculpturing and regeneration.Conclusions: The DASS technique is a predictable integrated digital workflow that simplifies the achievement of a scalloped tissue interface for pink free fixed implant prosthesis, reestablishing the mucosal dimension required for the protection of underlying bone while maintaining tissue health. The surgical sculpturing and maturation of the soft and bone tissue is driven and enhanced by the xenogeneic collagen matrix grafting and prosthetic scaffold effect of the digitally prefabricated interim prosthesis delivered the day of the surgery

    The supercuspidal representations of p-adic classical groups

    Full text link
    Let G be a unitary, symplectic or special orthogonal group over a locally compact non-archimedean local field of odd residual characteristic. We construct many new supercuspidal representations of G, and Bushnell-Kutzko types for these representations. Moreover, we prove that every irreducible supercuspidal representation of G arises from our constructions.Comment: 55 pages -- minor changes from 1st version (mostly in sections 2.2, 4.2 and 6.2). To appear in Inventiones mathematicae, 2008 (DOI is not yet active as at 12 Nov 2007

    Irreducible characters of GSp(4, q) and dimensions of spaces of fixed vectors

    Full text link
    In this paper, we compute the conjugacy classes and the list of irreducible characters of GSp(4,q), where q is odd. We also determine precisely which irreducible characters are non-cuspidal and which are generic. These characters are then used to compute dimensions of certain subspaces of fixed vectors of smooth admissible non-supercuspidal representations of GSp(4,F), where F is a non-archimedean local field of characteristic zero with residue field of order q.Comment: 48 pages, 21 tables. Corrected an error in Table 16 for type V* representations (theta_11 and theta_12 were switched

    Escape from a metastable well under a time-ramped force

    Full text link
    Thermally activated escape of an over-damped particle from a metastable well under the action of a time-ramped force is studied. We express the mean first passage time (MFPT) as the solution to a partial differential equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can provide a valuable first estimate.Comment: 9 pages, including 2 figure

    Asymptotics and local constancy of characters of p-adic groups

    Full text link
    In this paper we study quantitative aspects of trace characters Θπ\Theta_\pi of reductive pp-adic groups when the representation π\pi varies. Our approach is based on the local constancy of characters and we survey some other related results. We formulate a conjecture on the behavior of Θπ\Theta_\pi relative to the formal degree of π\pi, which we are able to prove in the case where π\pi is a tame supercuspidal. The proof builds on J.-K.~Yu's construction and the structure of Moy-Prasad subgroups.Comment: Proceedings of Simons symposium on the trace formul

    Quantum dynamical theory for squeezing the output of a Bose-Einstein condensate

    Full text link
    A linear quantum dynamical theory for squeezing the output of the trapped Bose-Einstein condensate is presented with the Bogoliubov approximation. We observe that the non-classical properties, such as sub-Poisson distribution and quadrature squeezing effect, mutually oscillate between the quantum states of the applied optical field and the resulting atom laser beam with time. In particular, it is shown that an initially squeezed optical field will lead to squeezing in the outcoupled atomic beam at later times.Comment: 6 pages, Latex file, Phys.Rev.A 63(2001)1560

    Resonance fluorescence in a band gap material: Direct numerical simulation of non-Markovian evolution

    Get PDF
    A numerical method of calculating the non-Markovian evolution of a driven atom radiating into a structured continuum is developed. The formal solution for the atomic reduced density matrix is written as a Markovian algorithm by introducing a set of additional, virtual density matrices which follow, to the level of approximation of the algorithm, all the possible trajectories of the photons in the electromagnetic field. The technique is perturbative in the sense that more virtual density matrices are required as the product of the effective memory time and the effective coupling strength become larger. The number of density matrices required is given by 3M3^{M} where MM is the number of timesteps per memory time. The technique is applied to the problem of a driven two-level atom radiating close to a photonic band gap and the steady-state correlation function of the atom is calculated.Comment: 14 pages, 9 figure

    Integrin activation - the importance of a positive feedback

    Full text link
    Integrins mediate cell adhesion and are essential receptors for the development and functioning of multicellular organisms. Integrin activation is known to require both ligand and talin binding and to correlate with cluster formation but the activation mechanism and precise roles of these processes are not yet resolved. Here mathematical modeling, with known experimental parameters, is used to show that the binding of a stabilizing factor, such as talin, is alone insufficient to enable ligand-dependent integrin activation for all observed conditions; an additional positive feedback is required.Comment: in press in Bulletin of Mathematical Biolog
    corecore