556 research outputs found

    PFO-BPy solubilizers for SWNTs: Modelling of polymers from oligomers

    Get PDF
    arXiv:1411.3275v1Due to their exeptional physical properties, single walled carbon nanotubes (SWNTs) embedded in organic polymers (polymer-SWNT hybrid systems) are promising materials for organic photovoltaic devices. Already at the SWNT sorting and debundling step, polymers such as the copolymer of 9,9-dioctylfluorenyl-2,7-diyl and bipyridine (PFO-BPy) are used as solubilizers. However, to model polymer-SWNT hybrid systems, we must first determine the smallest oligomer needed to sufficiently describe the electronic and optical absorption properties of the polymer. To do so, we use time dependent density functional theory (TDDFT) to model the PFO-BPy polymer using the monomers, dimers and trimers of the PFO-BPy and Py-PFO-Py building blocks, which are also compared to the infinitely long polymer. We find the Py-PFO-Py monomer, with shortened side chains, already describes the PFO-BPy polymer within the expected accuracies of TDDFT.We acknowledge funding from the European Projects DYNamo (ERC-2010-AdG-267374), CRONOS (280879-2CRONOS CP-FP7) and POCAONTAS (FP7-PEOPLE-2012-ITN-316633); Spanish Grants (FIS2012-37549-C05-02, FIS2010- 21282-C02-01, PIB2010US-00652, JCI-2010-08156); and Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-319-07).Peer Reviewe

    Donut and dynamic polarization effects in proton channeling through carbon nanotubes

    Get PDF
    We investigate the angular and spatial distributions of protons of the energy of 0.223 MeV after channeling through an (11,~9) single-wall carbon nanotube of the length of 0.2 μ\mum. The proton incident angle is varied between 0 and 10 mrad, being close to the critical angle for channeling. We show that, as the proton incident angle increases and approaches the critical angle for channeling, a ring-like structure is developed in the angular distribution - donut effect. We demonstrate that it is the rainbow effect. When the proton incident angle is between zero and a half of the critical angle for channeling, the image force affects considerably the number and positions of the maxima of the angular and spatial distributions. However, when the proton incident angle is close to the critical angle for channeling, its influence on the angular and spatial distributions is reduced strongly. We demonstrate that the increase of the proton incident angle can lead to a significant rearrangement of the propagating protons within the nanotube. This effect may be used to locate atomic impurities in nanotubes as well as for creating nanosized proton beams to be used in materials science, biology and medicine.Comment: 17 pages, 14 figure

    Perioperative safety of two-team simultaneous bilateral total knee arthroplasty in the obese patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the rates of perioperative morbidity and mortality with simultaneous bilateral total knee arthroplasty remain a concern, multiple studies have shown the procedure to be safe in selected patient populations. Evidence also remains mixed regarding the outcomes of total knee arthroplasty in obese patients. The purpose of this paper is to compare the rates of perioperative morbidity and mortality in consecutive obese patients undergoing two-team simultaneous bilateral total knee arthroplasty and unilateral total knee arthroplasty.</p> <p>Methods</p> <p>The records on all two-team simultaneous total knee arthroplasties and unilateral total knee arthroplasties from October 1997 to December 2007 were reviewed. A total of 151 patients with a body mass index (BMI) >30 undergoing two-team simultaneous total knee arthroplasty and 148 patients with a BMI >30 undergoing unilateral total knee arthroplasty were retrospectively reviewed and analyzed to determine perioperative morbidity and mortality as well as one-year mortality rates.</p> <p>Results</p> <p>Preoperative patient characteristics did not show any significant differences between groups. The simultaneous bilateral group had significantly longer operative times (127.4 versus 112.7 minutes, p < 0.01), estimated blood loss (176.7 versus 111.6 mL, p = 0.01), percentage of patients requiring blood transfusion (64.9% versus 13.9%, p < 0.01), length of hospital stay (3.72 versus 3.30 days, p < 0.01), and percentage of patients requiring extended care facility usage at discharge (63.6% versus 27.8%, p < 0.01). No significant difference between unilateral and bilateral groups was seen in regards to total complication rate, major or minor complication subgroup rate, or any particular complication noted. Doubling the variables in the unilateral group for a staged total knee arthroplasty scenario did create significant increases over the simultaneous data in almost every data category.</p> <p>Conclusions</p> <p>Two-team simultaneous total knee arthroplasty appears to be safe in obese patients, with similar complication rates as compared to unilateral procedures. Two-team simultaneous total knee arthroplasty also appears to have potential benefits over a staged procedure in the obese patient, although more study is required regarding this topic.</p

    Anomalous insulator metal transition in boron nitride-graphene hybrid atomic layers

    Get PDF
    The study of two-dimensional (2D) electronic systems is of great fundamental significance in physics. Atomic layers containing hybridized domains of graphene and hexagonal boron nitride (h-BNC) constitute a new kind of disordered 2D electronic system. Magneto-electric transport measurements performed at low temperature in vapor phase synthesized h-BNC atomic layers show a clear and anomalous transition from an insulating to a metallic behavior upon cooling. The observed insulator to metal transition can be modulated by electron and hole doping and by the application of an external magnetic field. These results supported by ab-initio calculations suggest that this transition in h-BNC has distinctly different characteristics when compared to other 2D electron systems and is the result of the coexistence between two distinct mechanisms, namely, percolation through metallic graphene networks and hopping conduction between edge states on randomly distributed insulating h-BN domains.Comment: 9 pages, 15 figure

    Strain balancing of MOVPE InAs/GaAs quantum dots using GaAs0.8P0.2

    Get PDF
    MOVPE growth of stacked InAs/ GaAs QDs with and without GaAs 0.8 P 0.2 strain balancing layers has been studied. The GaAsP layers reduce the accumulated strain whilst maintaining the electrical characteristics. This should enable closer stacking of QD layers leading to higher gain and improved laser performance

    Strain Balancing of Metal-Organic Vapour Phase Epitaxy InAs/GaAs Quantum Dot Lasers

    Get PDF
    Incorporation of a GaAs0.8P0.2 layer allows strain balancing to be achieved in self-assembled InAs/GaAs quantum dots (QDs) grown by metal organic vapor phase epitaxy. Tuneable wavelength and high density are obtained through growth parameter optimization, with emission at 1.27 μm and QD layer density 3 × 10 10 cm-2. Strain balancing allows close vertical stacking (30 nm) of the QD layers, giving the potential for increased optical gain. Modeling and device characterization indicates minimal degradation in the optical and electrical characteristics unless the phosphorus percentage is increased above 20%. Laser structures are fabricated with a layer separation of 30 nm, demonstrating low temperature lasing with a threshold current density of 100 A/cm2 at 130 K without any facet coating

    Intervention planning for Antibiotic Review Kit (ARK): a digital and behavioural intervention to safely review and reduce antibiotic prescriptions in acute and general medicine

    Get PDF
    Background Hospital antimicrobial stewardship strategies, such as ‘Start Smart, Then Focus’ in the UK, balance the need for prompt, effective antibiotic treatment with the need to limit antibiotic overuse using ‘review and revise’. However, only a minority of review decisions are to stop antibiotics. Research suggests that this is due to both behavioural and organizational factors. Objectives To develop and optimize the Antibiotic Review Kit (ARK) intervention. ARK is a complex digital, organizational and behavioural intervention that supports implementation of ‘review and revise’ to help healthcare professionals safely stop unnecessary antibiotics. Methods A theory-, evidence- and person-based approach was used to develop and optimize ARK and its implementation. This was done through iterative stakeholder consultation and in-depth qualitative research with doctors, nurses and pharmacists in UK hospitals. Barriers to and facilitators of the intervention and its implementation, and ways to address them, were identified and then used to inform the intervention’s development. Results A key barrier to stopping antibiotics was reportedly a lack of information about the original prescriber’s rationale for and their degree of certainty about the need for antibiotics. An integral component of ARK was the development and optimization of a Decision Aid and its implementation to increase transparency around initial prescribing decisions. Conclusions The key output of this research is a digital and behavioural intervention targeting important barriers to stopping antibiotics at review (see http://bsac-vle.com/ark-the-antibiotic-review-kit/ and http://antibioticreviewkit.org.uk/). ARK will be evaluated in a feasibility study and, if successful, a stepped-wedge cluster-randomized controlled trial at acute hospitals across the NHS

    Dynamic polarization effects on the angular distributions of protons channeled through carbon nanotubes in dielectric media

    Full text link
    The best level of ordering and straightening of carbon nanotube arrays is often achieved when they are grown in a dielectric matrix, so such structures present the most suitable candidates for future channeling experiments with carbon nanotubes. Consequently, we investigate here how the dynamic polarization of carbon valence electrons in the presence of various surrounding dielectric media affects the angular distributions of protons channeled through (11,~9) single-wall carbon nanotubes. Proton speeds between 3 and 10 a.u., corresponding to energies of 0.223 and 2.49 MeV, are chosen with the nanotube's length varied between 0.1 and 1 μ\mum. We describe the repulsive interaction between a proton and the nanotube's atoms in a continuum-potential approximation based on the Doyle-Turner potential, whereas the attractive image force on a proton is calculated using a two-dimensional hydrodynamic model for the dynamic response of the nanotube valence electrons, while assigning to the surrounding medium an appropriate (frequency dependent) dielectric function. The angular distributions of channeled protons are generated using a computer simulation method which solves the proton equations of motion in the transverse plane numerically. Our analysis shows that the presence of a dielectric medium can strongly affect both the appearance and positions of maxima in the angular distributions of channeled protons.Comment: 14 pages, 11 figures, Accepted for publication in Phys. Rev.
    corecore