38 research outputs found

    A 1-Million-Year Record of Environmental Change in the Central Mediterranean Sea From Organic Molecular Proxies

    Get PDF
    The Mediterranean Sea is particularly sensitive to climate oscillations and represents a key location to study past climatic and oceanographic changes. One valuable source of paleoceanographic information is through molecular biomarkers in deep sea sediments. This approach has been applied in a number of studies in this basin, but only covering the most recent glacial/interglacial cycles. Here we present, for the first time in the Mediterranean Sea, a molecular biomarker record from the Strait of Sicily that covers the last million years until the present, almost continuously. We present data on alkenone derived urn:x-wiley:25724517:media:palo21102:palo21102-math-0001 index sea surface temperatures (SST) and provide insights on the evolution of the phytoplankton community composition and terrestrial inputs through the analysis of the concentrations of alkenones, brassicasterol and long-chain alcohols. The urn:x-wiley:25724517:media:palo21102:palo21102-math-0002-SST record followed a climatic evolution modulated by glacial/interglacial cycles with a marked increase in the 100 kyr-amplitude of the glacial cycles at ∼430 ka, coincident with the Mid-Brunhes transition. In addition, SSTs were consistently higher compared with other records in the western Mediterranean, indicative of the progressive warming that surface waters experience along their transit from the Strait of Gibraltar to the Central Mediterranean. Regarding the concentrations of alkenones and brassicasterol, they displayed distinct alternate peaks, some of them coeval with the deposition of sapropels. This suggests that different environmental and oceanographic conditions characterized each sapropel which, together with changes in terrestrial inputs and the degree of oligotrophy, induced the alternate proliferation of coccolithophores and diatoms.Postprin

    Peeping through the deep: Insights to the reproductive strategies of cold water gorgonians in the Azores Archipelago

    Get PDF
    INTRODUCTION:The mean age at delivery has increased over the latest half of a century. Women of advanced maternal age have increased obstetrical risks and increased risk of chromosomal abnormalities and some other specified diagnoses in the offspring. The aim of this study was to assess the association between maternal age and overall child morbidity according to main diagnosis groups. MATERIAL AND METHODS:We conducted a national cohort study including 352 027 live firstborn singleton children. The children were born between Jan 1994 and Dec 2009 and followed to Dec 2012. Children were divided into groups according to maternal age: 15-24, 25-29, 30-34, and 35+ years. Poisson regression analyses calculated adjusted incidence rate ratios (IRR) of child morbidities according to main diagnoses groups A-Q of the International Classification of Disease 10 with adjustment for year of birth, body mass index, smoking, and mother's level of education. RESULTS:Average follow-up time was 11 years. Compared to children born to women 25-29 years, firstborn children to mothers aged 35+ had higher child morbidity in 8 of 19 main diagnosis groups and firstborn children to mothers 15-24 years had higher child morbidity in 12 of 19 main diagnosis groups. Thus, for a majority of diseases a U-shaped correlation was found, with lowest rates in women 25-29 years. CONCLUSION:Firstborn children to both older and younger mothers have higher overall morbidity as compared to children born by mothers 25-29 years

    Biodiversity and benthic megafaunal communities inhabiting the Formigas Bank (NE Azores)

    Get PDF
    The Formigas Bank is an offshore seamount located in the easternmost part of the Azores archipelago (northeast Atlantic). It rises from abyssal depths to the surface, including a small set of islets. The bank holds multiple nature conservation designations, including a Natura 2000 Special Area of Conservation, an OSPAR Marine Protected Area, a RAMSAR site and a Nature Reserve declared under the Azores network of protected areas. The protection is based on the presence of sublittoral biotopes of high conservation interest, and importance as feeding grounds, spawning and nursery areas for many marine species, including fish, cetaceans and turtles. Although some information exists on the sublittoral communities occurring on the seamount summit (e.g., infralittoral Cystoseira and Laminaria beds, circalittoral hydrarian and sponge gardens, rich pelagic fauna), virtually no information was available on the deep-sea communities inhabiting the seamount flanks. Therefore, during the MEDWAVES cruise, the flanks of the Formigas bank have been surveyed using multibeam sonar, an ROV and oceanographic profiles, with the objective to characterise deep-sea biodiversity and megafaunal communities as well as the environment where they occur. This communication will present results from the video annotations of the ten dives made on the seamount slopes between ~500m and ~1,500 m depth. Diverse communities of sedentary suspension-feeding organisms were observed, with more than 20 cold-water coral species (mainly octocorals) being recorded, as well as many different sponge morphotypes. Dense coral garden habitats and sponge grounds were identified on several occasions, confirming the presence of vulnerable marine ecosystems (VMEs) and of ecologically or biologically significant areas (EBSAs). Differences in the abundance and composition of these habitats between the northern and southern dive transects are interpreted as reflecting substrate and geomorphological differences, as well as the potential influence of the Mediterranean Outflow Water (MOW). The new knowledge on deep-sea megafaunal communities reinforces the importance of this seamount as an area of high conservation interest

    Vulnerable marine ecosystems and biological features of Gazul mud volcano (Gulf of Cádiz): A contribution towards a potential "Gulf of Cádiz" EBSA

    Get PDF
    The Gulf of Cádiz (GoC) represents an area of socioeconomic and scientific importance for oceanographic, geological and biological processes. An interesting feature of the GoC is the presence of a large amount of mud volcanoes (MVs) and diapirs that display different seepage, seabed types, oceanographic settings and biological communities. Detailed exploration of some MVs is still needed for detecting Vulnerable Marine ecosystems (VMEs) that seem to be rare in other areas of the GoC, improving the current knowledge on its biodiversity and ecological attributes. During different expeditions (MEDWAVES-ATLAS, INDEMARES-CHICA 0610 & 0412 and ISUNEPCA 0616) carried out in different years, biological samples and videos were obtained in Gazul MV (Spanish Margin of the GoC). The study of those samples and videos has revealed the presence of several ecologically important VMEs (e.g. 3 species of reef framework-forming corals, coral gardens including solitary scleractinians, gorgonians and antipatharians, as well as deep-sea sponge aggregations and chemosynthesis-related structures) and a large number of species occurring in this MV, including new records for the European margin, threatened species and non-previously described species. The combination of different environmental and anthropogenic factors allowed the present-day persistence of these VMEs in the GoC. Some of Gazul MV biological and ecological attributes fit several criteria of the Convention on Biological Diversity for EBSA description (e.g. 1,3,4,6) that, together with those of other areas of the GoC, may contribute to the future potential nomination of an EBSA in this area of the NE Atlantic
    corecore