39 research outputs found

    Localization in semi-infinite herringbone waveguides

    Get PDF
    The paper includes novel results for the scattering and localization of a time-harmonic flexural wave by a semi-infinite herringbone waveguide of rigid pins embedded within an elastic Kirchhoff plate. The analytical model takes into account the orientation and spacing of the constituent parts of the herringbone system, and incorporates dipole approximations for the case of closely spaced pins. Illustrative examples are provided, together with the predictive theoretical analysis of the localized waveforms

    Wave polarization and dynamic degeneracy in a chiral elastic lattice

    Get PDF
    This paper addresses fundamental questions arising in the theory of Bloch–Floquet waves in chiral elastic lattice systems. This area has received a significant attention in the context of ‘topologically protected’ waveforms. Although practical applications of chiral elastic lattices are widely appreciated, especially in problems of controlling low-frequency vibrations, wave polarization and filtering, the fundamental questions of the relationship of these lattices to classical waveforms associated with longitudinal and shear waves retain a substantial scope for further development. The notion of chirality is introduced into the systematic analysis of dispersive elastic waves in a doubly-periodic lattice. Important quantitative characteristics of the dynamic response of the lattice, such as lattice flux and lattice circulation, are used in the analysis along with the novel concept of ‘vortex waveforms’ that characterize the dynamic response of the chiral system. We note that the continuum concepts of pressure and shear waves do not apply for waves in a lattice, especially in the case when the wavelength is comparable with the size of the elementary cell of the periodic structure. Special critical regimes are highlighted when vortex waveforms become dominant. Analytical findings are accompanied by illustrative numerical simulations

    Wave Characterisation in a Dynamic Elastic Lattice: Lattice Flux and Circulation

    Get PDF
    A novel characterisation of dispersive waves in a vector elastic lattice is presented in the context of wave polarisation. This proves to be especially important in analysis of dynamic anisotropy and standing waves trapped within the lattice. The operators of lattice flux and lattice circulation provide the required quantitative description, especially in cases of intermediate and high frequency dynamic regimes. Dispersion diagrams are conventionally considered as the ultimate characteristics of dynamic properties of waves in periodic systems. Generally, a waveform in a lattice can be thought of as a combination of pressure-like and shear-like waves. However, a direct analogy with waves in the continuum is not always obvious. We show a coherent way to characterise lattice waveforms in terms of so-called lattice flux and lattice circulation. In the long wavelength limit, this leads to well-known interpretations of pressure and shear waves. For the cases when the wavelength is comparable with the size of the lattice cell, new features are revealed which involve special directions along which either lattice flux or lattice circulation is zero. The cases of high frequency and wavelength comparable to the size of the elementary cell are considered, including dynamic anisotropy and dynamic neutrality in structured solids

    Tilted resonators in a triangular elastic lattice: chirality, Bloch waves and negative refraction

    Get PDF
    We consider a vibrating triangular mass-truss lattice whose unit cell contains a resonator of a triangular shape. The resonators are connected to the triangular lattice by trusses. Each resonator is tilted, i.e. it is rotated with respect to the triangular lattice's unit cell through an angle ϑ0\vartheta_0. This geometrical parameter is responsible for the emergence of a resonant mode in the Bloch spectrum for elastic waves and strongly affects the dispersive properties of the lattice. Additionally, the tilting angle ϑ0\vartheta_0 triggers the opening of a band gap at a Dirac-like point. We provide a physical interpretation of these phenomena and discuss the dynamical implications on elastic Bloch waves. The dispersion properties are used to design a structured interface containing tilted resonators which exhibit negative refraction and focussing, as in a "flat elastic lens"

    Singular perturbations and cloaking illusions for elastic waves in membranes and Kirchhoff plates

    Get PDF
    A perturbation approach is used for analysis of a near-cloak in shielding a finite scatterer from an incident flexural wave. The effect of the boundary conditions on the interior surface of the cloaking layer is analysed in detail, based on the explicit analytical solutions of a wave propagation problem for a membrane as well as a Kirchhoff flexural plate. It is shown that the Dirichlet boundary condition on the interior contour of the cloak significantly reduces the cloaking action in the membrane case, and it also makes cloaking impossible for flexural waves in a Kirchhoff plate

    Gyro-elastic beams for the vibration reduction of long flexural systems

    Get PDF
    The paper presents a model of a chiral multi-structure incorporating gyro-elastic beams. Floquet–Bloch waves in periodic chiral systems are investigated in detail, with the emphasis on localization and the formation of standing waves. It is found that gyricity leads to low-frequency standing modes and generation of stop-bands. A design of an earthquake protection system is offered here, as an interesting application of vibration isolation. Theoretical results are accompanied by numerical simulations in the time-harmonic regime

    Controlling Flexural Waves in Semi-Infinite Platonic Crystals with Resonator-Type Scatterers

    Get PDF
    We address the scattering and transmission of a plane flexural wave through a semi-infinite array of point scatterers/resonators, which take a variety of physically interesting forms. The mathematical model accounts for several classes of point defects, including mass-spring resonators attached to the top surface of the flexural plate and their limiting case of concentrated point masses. We also analyse the special case of resonators attached to opposite faces of the plate. The problem is reduced to a functional equation of the Wiener–Hopf type, whose kernel varies with the type of scatterer considered. A novel approach, which stems from the direct connection between the kernel function of the semi-infinite system and the quasi-periodic Green's functions for corresponding infinite systems, is used to identify special frequency regimes. We thereby demonstrate dynamically anisotropic wave effects in semi-infinite platonic crystals, with particular attention paid to designing systems that exhibit dynamic neutrality (perfect transmission) and localisation close to the structured interface

    “Deflecting elastic prism” and unidirectional localisation for waves in chiral elastic systems

    Get PDF
    For the first time, a design of a “deflecting elastic prism” is proposed and implemented for waves in a chiral medium. A novel model of an elastic lattice connected to a non-uniform system of gyroscopic spinners is designed to create a unidirectional wave pattern, which can be diverted by modifying the arrangement of the spinners within the medium. This important feature of the gyro-system is exploited to send a wave from a point of the lattice to any other point in the lattice plane, in such a way that the wave amplitude is not significantly reduced along the path. We envisage that the proposed model could be very useful in physical and engineering applications related to directional control of elastic waves

    Flexural vibration systems with gyroscopic spinners

    Get PDF
    In this paper, we study the spectral properties of a finite system of flexural elements connected by gyroscopic spinners. We determine how the eigenfrequencies and eigenmodes of the system depend on the gyricity of the spinners. In addition, we present a transient numerical simulation that shows how a gyroscopic spinner attached to the end of a hinged beam can be used as a ‘stabilizer’, reducing the displacements of the beam. We also discuss the dispersive properties of an infinite periodic system of beams with gyroscopic spinners at the junctions. In particular, we investigate how the band-gaps of the structure can be tuned by varying the gyricity of the spinners

    Asymptotic analysis of thin linear elastic layers constrained by two rigid plates

    Get PDF
    Two asymptotic solutions are presented for linear elastic thin, not necessarily circular, cylindrical layers fully constrained by two rigid plates. Other than being small, the plate displacements and rotations are not restricted, and therefore, in general, a constrained layer is subjected to combined stretching, bending, shearing, and twisting. The first solution is restricted to layers formed by compressible solids, whose Poisson's ratio is not too close to one half. This solution is a superposition of a polynomial displacement field, valid in the bulk of the layer, and a corrective displacement field, which decays exponentially fast away from the cylindrical surface and becomes negligible at distances comparable to the layer thickness. The second solution is not restricted in terms Poisson's ratio but it is correct only to a leading order. This solution unifies leading-order solutions for layers formed by compressible, nearly incompressible, and incompressible solids. The unification involves a parameter characterizing the competition between compressibility and thinness
    corecore