30 research outputs found

    Plasma neuregulin 1 as a synaptic biomarker in Alzheimer's disease: a discovery cohort study

    Get PDF
    BACKGROUND: Synaptic dysfunction is an early core feature of Alzheimer's disease (AD), closely associated with cognitive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers reflecting synaptic impairment would be of great clinical interest. OBJECTIVE: To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative disorders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic biomarkers. METHODS: This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, Aβ-negative), non-AD MCI (n = 19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (Aβ 42/Aβ 40 ratio, phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25. RESULTS: Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurological controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 87.3%. Plasma NRG1 correlated with CSF NRG1 (β = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was associated with AD CSF core biomarkers in the whole cohort and in Aβ-positive patients (β = -0.197-0.423). Plasma NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (β = 0.278-0.355). Plasma NRG1 concentration correlated inversely with MMSE in the whole cohort and in Aβ-positive patients (all, β = -0.188, P = 0.038; Aβ+: β = -0.255, P = 0.038). CONCLUSION: Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synaptic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic impairment in AD

    Fonction, régulation de PCP4 et trisomie 21 (analyse de modèles murins de surexpression)

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration

    No full text
    International audienceOver the last years, contact sites between the endoplasmic reticulum (ER) and mitochondria have attracted great attention in the study of cell homeostasis and dysfunction, especially in the context of neurodegenerative disorders. This is largely due to the critical involvement of this subcellular compartment in a plethora of vital cellular functions: Ca2+ homeostasis, mitochondrial dynamics, transport, bioenergetics and turnover, ER stress, apoptotic signaling and inflammation. An increasing number of disease-associated proteins have been reported to physically associate with the ER-mitochondria interface, and cause structural and/or functional perturbations of this compartment. In the present review, we summarize current knowledge about the architecture and functions of the ER-mitochondria contact sites, and the consequences of their alteration in different neurodegenerative disorders. Special emphasis is placed on the caveats and difficulties in defining the nature and origin of the highlighted defects in ER-mitochondria communication, and their exact contribution to the neurodegenerative process

    PKR involvement in Alzheimer’s disease

    No full text
    Abstract Background Brain lesions in Alzheimer’s disease (AD) are characterized by Aβ accumulation, neurofibrillary tangles, and synaptic and neuronal vanishing. According to the amyloid cascade hypothesis, Aβ1-42 oligomers could trigger a neurotoxic cascade with kinase activation that leads to tau phosphorylation and neurodegeneration. Detrimental pathways that are associated with kinase activation could also be linked to the triggering of direct neuronal death, the production of free radicals, and neuroinflammation. Results Among these kinases, PKR (eukaryotic initiation factor 2α kinase 2) is a pro-apoptotic enzyme that inhibits translation and that has been implicated in several molecular pathways that lead to AD brain lesions and disturbed memory formation. PKR accumulates in degenerating neurons and is activated by Aβ1-42 neurotoxicity. It might modulate Aβ synthesis through BACE 1 induction. PKR is increased in cerebrospinal fluid from patients with AD and mild cognitive impairment and can induce the activation of pro-inflammatory pathways leading to TNFα and IL1-β production. In addition, experimentally, PKR seems to down-regulate the molecular processes of memory consolidation. This review highlights the major findings linking PKR and abnormal brain metabolism associated with AD lesions. Conclusions Studying the detrimental role of PKR signaling in AD could pave the way for a neuroprotective strategy in which PKR inhibition could reduce neuronal demise and alleviate cognitive decline as well as the cumbersome burden of AD for patients

    Peripheral inflammation increases PKR activation, Tau phosphorylation and amyloid β production in wild-type mice

    Get PDF
    International audienceSystemic inflammation is correlated with dementia progression. Pro-inflammatory molecules can communicate from the periphery to the central nervous system to induce neuroinflammation and neurodegeneration. Our protein of interest is the pro-apoptotic kinase PKR (the double strand-RNA dependent protein kinase). Increased activated PKR levels were found in AD patients brain and cerebrospinal fluid. PKR activation can be triggered by inflammatory stresses and induces neurotoxicity in vitro. Is in vivo PKR-mediated inflammation involved in AD neurodegenerative process

    Downregulated apoptosis and autophagy after anti-Aβ immunotherapy in Alzheimer’s disease

    No full text
    Aβ immunisation of Alzheimer’s disease (AD) patients in the AN1792 (Elan Pharmaceuticals) trial caused Aβ removal and a decreased density of neurons in the cerebral cortex. As preservation of neurons may be a critical determinant of outcome after Aβ immunisation, we have assessed the impact of previous Aβ immunisation on the expression of a range of apoptotic proteins in post-mortem human brain tissue. Cortex from 13 AD patients immunised with AN1792 (iAD) and from 27 non-immunised AD (cAD) cases was immunolabelled for pro-apoptotic proteins implicated in AD pathophysiology: phosphorylated c-Jun N-terminal kinase (pJNK), activated caspase3 (a-casp3), phosphorylated GSK3β on tyrosine 216 (GSK3βtyr216), p53 and Cdk5/p35. Expression of these proteins was analysed in relation to immunisation status and other clinical data. The antigen load of all of these pro-apoptotic proteins was significantly lower in iAD than cAD (p &lt; 0.0001). In cAD, significant correlations (p &lt; 0.001) were observed between: Cdk5/p35 and GSK3βtyr216; a-casp3 and Aβ42; p53 and age at death. In iAD, significant correlations were found between GSK3βtyr216 and a-casp3; both spongiosis and neuritic curvature ratio and Aβ42; and Cdk5/p35 and Aβ-antibody level. Although neuronal loss was increased by immunisation with AN1792, our present findings suggest downregulation of apoptosis in residual neurons and other cells

    Neuroprotective role of PKR in a model of neurodegeneration due to mild impairment of oxidative metabolism

    Get PDF
    International audienceAbnormalities in oxidativemetabolism, inflammation,and selective neuronal death are described features of Alzheimer 's disease (AD) pathology. Brain thiamine-dependent enzymes play an important role in energy metabolism and display reduced activity in AD. Thiamine (vitamin B1) deficiency (TD) induces regionally selective neuronal death in animal and human brains
    corecore