776 research outputs found
Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides
BACKGROUND:
METHODS: Laboratory bioassays were carried out using the leaf-dipping method to examine the susceptibility of the laboratory and field strains to the tested insecticides. Activities of detoxification enzymes were determined in an attempt to identify resistance mechanisms.
RESULTS: The results showed that LC
CONCLUSION: Our findings, along with other tactics, are expected to help with the resistance management o
On the electrodeposition of titanium in ionic liquids
The ability to electrodeposit titanium at low temperatures would be an important breakthrough for making corrosion resistant layers on a variety of technically important materials. Ionic liquids have often been considered as suitable solvents for the electrodeposition of titanium. In the present paper we have extensively investigated whether titanium can be electrodeposited from its halides (TiCl4, TiF4, TiI4) in different ionic liquids, namely1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf2N), 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)amide ([BMP]Tf2N), and trihexyltetradecyl-phosphonium bis(trifluoromethylsulfonyl)amide ([P14,6,6,6]Tf2N). Cyclic voltammetry and EQCM measurements show that, instead of elemental Ti, only non-stoichiometric halides are formed, for example with average stoichiometries of TiCl0.2, TiCl0.5 and TiCl1.1. In situ STM measurements show that—in the best case—an ultrathin layer of Ti or TiClx with thickness below 1 nm can be obtained. In addition, results from both electrochemical and chemical reduction experiments of TiCl4 in a number of these ionic liquids support the formation of insoluble titanium cation–chloride complex species often involving the solvent. Solubility studies suggest that TiCl3 and, particularly, TiCl2 have very limited solubility in these Tf2N based ionic liquids. Therefore it does not appear possible to reduce Ti4+ completely to the metal in the presence of chloride. Successful deposition processing for titanium in ionic liquids will require different maybe tailor-made titanium precursors that avoid these problems
Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation
An Effective Satellite Remote Sensing Tool Combining Hardware and Software Solutions
In this paper we propose a new effective remote sensing tool combining hardware and software solutions as an extension of our previous work. In greater detail the tool consists of a low cost receiver subsystem for public weather satellites and a signal and image processing module for several tasks such as signal and image enhancement, image reconstruction and cloud detection. Our solution allows to manage data from satellites effectively with low cost components and portable software solutions. We aim at sampling and processing of the modulated signal entirely in software enabled by Software Defined Radios (SDR) and CPU computational speed overcoming hardware limitation such as high receiver noise and low ADC resolution. Since we want to extend our previous method to demodulate signals coming from various meteorological satellites, we propose a new high frequency receiving system designed to receive and demodulate signals transmitted at 1.7 GHz. The signals coming from satellites are demodulated, synchronized and enhanced by using low level image processing techniques, then cloud detection is performed by using the well known K-means clustering algorithm. The hardware and software architecture extensions make our solution able to receive and demodulate high frequency and bandwidth meteorological satellite signals, such as those transmitted by NOAA POES, NOAA GOES, EUMETSAT Metop, Meteor-M and FengYun
Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites.
Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility. Within 24Â h of rechallenge, these cells increased their migratory capacity, localized to infected sites, and subsequently differentiated into plasma cells. Alveolar macrophages mediated this process, in part by inducing expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This led to the recruitment of chemokine receptor CXCR3-expressing BRM cells to infected regions and increased local antibody concentrations. Our study uncovers spatiotemporal mechanisms that regulate lung BRM cell reactivation and demonstrates their capacity to rapidly deliver antibodies in a highly localized manner to sites of viral replication
Security and Privacy Issues in Wireless Mesh Networks: A Survey
This book chapter identifies various security threats in wireless mesh
network (WMN). Keeping in mind the critical requirement of security and user
privacy in WMNs, this chapter provides a comprehensive overview of various
possible attacks on different layers of the communication protocol stack for
WMNs and their corresponding defense mechanisms. First, it identifies the
security vulnerabilities in the physical, link, network, transport, application
layers. Furthermore, various possible attacks on the key management protocols,
user authentication and access control protocols, and user privacy preservation
protocols are presented. After enumerating various possible attacks, the
chapter provides a detailed discussion on various existing security mechanisms
and protocols to defend against and wherever possible prevent the possible
attacks. Comparative analyses are also presented on the security schemes with
regards to the cryptographic schemes used, key management strategies deployed,
use of any trusted third party, computation and communication overhead involved
etc. The chapter then presents a brief discussion on various trust management
approaches for WMNs since trust and reputation-based schemes are increasingly
becoming popular for enforcing security in wireless networks. A number of open
problems in security and privacy issues for WMNs are subsequently discussed
before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the
author's previous submission in arXiv submission: arXiv:1102.1226. There are
some text overlaps with the previous submissio
Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance
- …