323 research outputs found
Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems
Tungsten trioxide adopts a variety of structures which can be intercalated
with charged species to alter the electronic properties, thus forming `tungsten
bronzes'. Similar optical effects are observed upon removing oxygen from WO_3,
although the electronic properties are slightly different. Here we present a
computational study of cubic and hexagonal alkali bronzes and examine the
effects on cell size and band structure as the size of the intercalated ion is
increased. With the exception of hydrogen (which is predicted to be unstable as
an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3
is the most stable of the cubic systems, although in the hexagonal system the
larger ions are more stable. The band structures are identical, with the
intercalated atom donating its single electron to the tungsten 5d valence band.
Next, this was extended to a study of fractional doping in the Na_xWO_3 system
(0 < x < 1). A linear variation in cell parameter, and a systematic change in
the position of the Fermi level up into the valence band was observed with
increasing x. In the underdoped WO_3-x system however, the Fermi level
undergoes a sudden jump into the conduction band at around x = 0.2. Lastly,
three compounds of a layered WO_4×a,wdiaminoalkane hybrid series were
studied and found to be insulating, with features in the band structure similar
to those of the parent WO_3 compound which relate well to experimental
UV-visible spectroscopy results.Comment: 12 pages, 16 figure
Experimental mapping of soluble protein domains using a hierarchical approach
Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained
The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima
The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal structure of a Hpt domain fragment of CheA from Thermotoga maritima containing only the first four helices suggests more mobility in a tightly packed helix bundle structure than previously thought. In order to examine how the structures of Hpt domain homologs may differ from each other particularly in the conformation of the last helix, and whether an alternative conformation exists in the intact Hpt domain in solution, we have solved a high-resolution, solution structure of the CheA Hpt from T. maritima and characterized the backbone dynamics of this protein. The structure contains a four-helix bundle characteristic of histidine phosphotransfer domains. The position and orientation of the fifth helix resembles those in known Hpt domain crystal and solution structures in other histidine kinases. The alternative conformation that was reported in the crystal structure of the CheA Hpt from T. maritima missing the fifth helix is not detected in the solution structure, suggesting a role for the fifth helix in providing stabilizing forces to the overall structure
Does Observation of Postural Imbalance Induce a Postural Reaction?
Import JabRef | WosArea Life Sciences and Biomedicine - Other TopicsInternational audienceBackground: Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings: We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance: These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects
Channel Mobility and Contact Resistance in Scaled ZnO Thin-Film Transistors
ZnO thin-film transistors (TFTs) with scaled channel lengths of 10 m, 5 m, 4 m, and 2 m exhibit increasing intrinsic channel electron mobility at a gate bias of 10 V (15 V) from 0.782 cm/Vs (0.83 cm/Vs) in the 10 m channel length TFT to 8.9 cm/Vs (19.04 cm/Vs) for the channel length scaled down to 2 m. Current-voltage measurements indicate an n-type channel enhancement mode transistor operation, with threshold voltages in the range of V to V, maximum drain currents of 41 A/m, 96 A/m, 193 A/m, and 214 A/m at a gate bias of 10 V, and breakdown voltages of 80 V, 70 V, 62 V, and 59 V with respect to channel lengths of 10 m, 5 m, 4 m, and 2 m. The channel electron mobility (excluding contact resistance) is extracted by the transmission line method (TLM) from the effective electron mobility (including contact resistance). The contact sheet resistance of /sq extracted from the measurements, which is larger than the contact sheet resistance of /sq obtained from the DFT calculation and the 1D self-consistent Poisson-Shrödinger simulation, largely limits the drive current in the scaled ZnO TFTs
Communication and marketing as tools to cultivate the public's health: a proposed "people and places" framework
<p>Abstract</p> <p>Background</p> <p>Communication and marketing are rapidly becoming recognized as core functions, or core competencies, in the field of public health. Although these disciplines have fostered considerable academic inquiry, a coherent sense of precisely how these disciplines can inform the practice of public health has been slower to emerge.</p> <p>Discussion</p> <p>In this article we propose a framework – based on contemporary ecological models of health – to explain how communication and marketing can be used to advance public health objectives. The framework identifies the attributes of people (as individuals, as social networks, and as communities or populations) and places that influence health behaviors and health. Communication, i.e., the provision of information, can be used in a variety of ways to foster beneficial change among both people (e.g., activating social support for smoking cessation among peers) and places (e.g., convincing city officials to ban smoking in public venues). Similarly, marketing, i.e., the development, distribution and promotion of products and services, can be used to foster beneficial change among both people (e.g., by making nicotine replacement therapy more accessible and affordable) and places (e.g., by providing city officials with model anti-tobacco legislation that can be adapted for use in their jurisdiction).</p> <p>Summary</p> <p>Public health agencies that use their communication and marketing resources effectively to support people in making healthful decisions and to foster health-promoting environments have considerable opportunity to advance the public's health, even within the constraints of their current resource base.</p
- …