951 research outputs found

    Controlling attention to nociceptive stimuli with working memory

    Get PDF
    Background: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. Methodology and Principal Findings: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials), tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory), reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. Conclusion and Significance: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal priorities during achievement of cognitive activities and to keep pain-related information out of task settings

    The pain matrix reloaded: a salience detection system for the body

    Get PDF
    Neuroimaging and neurophysiological studies have shown that nociceptive stimuli elia salience detection system for the bodycit responses in an extensive cortical network including somatosensory, insular and cingulate areas, as well as frontal and parietal areas. This network, often referred to as the "pain matrix", is viewed as representing the activity by which the intensity and unpleasantness of the perception elicited by a nociceptive stimulus are represented. However, recent experiments have reported (i) that pain intensity can be dissociated from the magnitude of responses in the "pain matrix", (ii) that the responses in the "pain matrix" are strongly influenced by the context within which the nociceptive stimuli appear, and (iii) that non-nociceptive stimuli can elicit cortical responses with a spatial configuration similar to that of the "pain matrix". For these reasons, we propose an alternative view of the functional significance of this cortical network, in which it reflects a system involved in detecting, orienting attention towards, and reacting to the occurrence of salient sensory events. This cortical network might represent a basic mechanism through which significant events for the body's integrity are detected, regardless of the sensory channel through which these events are conveyed. This function would involve the construction of a multimodal cortical representation of the body and nearby space. Under the assumption that this network acts as a defensive system signaling potentially damaging threats for the body, emphasis is no longer on the quality of the sensation elicited by noxious stimuli but on the action prompted by the occurrence of potential threats

    From Margins to Museums: Tracing the Evolution of Representation for Contemporary African Artists in the United States

    Get PDF
    This thesis examines the impact of the Black Lives Matter movement on the art community in the United States and the evolution of representation for Contemporary African artists. By analyzing the careers and artistic contributions of Omar Ba, Toyin Ojih Odutola, and Njideka Akunyili Crosby, the study explores the concept of artistic agency according to which African artists have more control over the production and distribution of their works. The research begins with a comprehensive literature review, investigating the historical contexts that have shaped the art landscape, including the impact of colonization, decolonization, and globalization. The study reveals how these artists, historically marginalized in major art centers, have found new opportunities due to the changing social climate. The current shift in the global art community is notably visible in the increasing number of exhibitions and acquisitions of African artists\u27 works by major cultural institutions in the United States. It represents a significant moment in the history of art, signaling a future where African artists are celebrated for their unique perspectives and contributions. This research suggests a reversal of cultural imperialism through new, equitable practices between artists, galleries and museums

    Primary sensory cortices contain distinguishable spatial patterns of activity for each sense

    Get PDF
    Whether primary sensory cortices are essentially multisensory or whether they respond to only one sense is an emerging debate in neuroscience. Here we use a multivariate pattern analysis of functional magnetic resonance imaging data in humans to demonstrate that simple and isolated stimuli of one sense elicit distinguishable spatial patterns of neuronal responses, not only in their corresponding primary sensory cortex, but in other primary sensory cortices. These results indicate that primary sensory cortices, traditionally regarded as unisensory, contain unique signatures of other senses and, thereby, prompt a reconsideration of how sensory information is coded in the human brain

    Pain-free default mode network connectivity contributes to tonic experimental pain intensity beyond the role of negative mood and other pain-related factors

    Get PDF
    Alterations in the default mode network (DMN) connectivity across pain stages suggest a possible DMN involvement in the transition to persistent pain. This study examined whether pain-free DMN connectivity at lower alpha oscillations (8-10 Hz) accounts for a unique variation in experimental peak pain intensity beyond the contribution of factors known to influence pain intensity. Pain-free DMN connectivity was measured with electroencephalography prior to 1 h of capsaicin-evoked pain using a topical capsaicin patch on the right forearm. Pain intensity was assessed on a (0-10) numerical rating scale and the association between peak pain intensity and baseline measurements was examined using hierarchical multiple regression in 52 healthy volunteers (26 women). The baseline measurements consisted of catastrophizing (helplessness, rumination, magnification), vigilance, depression, negative and positive affect, sex, age, sleep, fatigue, thermal and mechanical pain thresholds and DMN connectivity (medial prefrontal cortex [mPFC]-posterior cingulate cortex [PCC], mPFC-right angular gyrus [rAG], mPFC-left Angular gyrus [lAG], rAG-mPFC and rAG-PCC). Pain-free DMN connectivity increased the explained variance in peak pain intensity beyond the contribution of other factors (ΔR  = 0.10, p = 0.003), with the final model explaining 66% of the variation (R  = 0.66, ANOVA: p < 0.001). In this model, negative affect (β = 0.51, p < 0.001), helplessness (β = 0.49, p = 0.007), pain-free mPFC-lAG connectivity (β = 0.36, p = 0.003) and depression (β = -0.39, p = 0.009) correlated significantly with peak pain intensity. Interestingly, negative affect and depression, albeit both being negative mood indices, showed opposing relationships with peak pain intensity. This work suggests that pain-free mPFC-lAG connectivity (at lower alpha) may contribute to individual variations in pain-related vulnerability. These findings could potentially lead the way for investigations in which DMN connectivity is used in identifying individuals more likely to develop chronic pain

    The long-term effect of complex regional pain syndrome type 1 on disability and quality of life after foot injury

    Get PDF
    PURPOSE: To study the long-term evolution of patients with lower-limb Complex Regional Pain Syndrome (CRPS), focusing on functional and proprioceptive aspects and quality of life. METHODS: In 20 patients suffering from chronic distal lower-limb CRPS diagnosed using Budapest criteria, we assessed joint position sense and strength of the knee muscles at the CRPS and unaffected leg, functional exercise capacity, pain, CRPS severity score, quality of life and kinesiophobia. Similar assessments were performed in 20 age-matched controls. RESULTS: The joint position performance (at 45°) was significantly lower for the CRPS leg as compared to controls. The knee extensor strength of the CRPS leg was significantly reduced as compared to the unaffected leg (−27%) and controls (−42%). CRPS patients showed significantly reduced performance at the 6 min-walk test as compared to their age group predicted value and controls. Patients suffering from CRPS for 3.8 years in average still exhibit high pain, severity and kinesiophobia scores. CONCLUSIONS: Long-term deficits in strength and proprioceptive impairments are observed at the knee joint of the CRPS leg. This persistent functional disability has significant repercussions on the quality of life. We highlight the importance of including strength and proprioceptive exercises in the therapeutic approaches for CPRS patients

    Touch uses frictional cues to discriminate flat materials

    Get PDF
    In a forced-choice task, we asked human participants to discriminate by touch alone glass plates from transparent polymethyl methacrylate (PMMA) plastic plates. While the surfaces were flat and did not exhibit geometric features beyond a few tens of nanometres, the materials differed by their molecular structures. They produced similar coefficients of friction and thermal effects were controlled. Most participants performed well above chance and participants with dry fingers discriminated the materials especially well. Current models of tactile surface perception appeal to surface topography and cannot explain our results. A correlation analysis between detailed measurements of the interfacial forces and discrimination performance suggested that the perceptual task depended on the transitory contact phase leading to full slip. This result demonstrates that differences in interfacial mechanics between the finger and a material can be sensed by touch and that the evanescent mechanics that take place before the onset of steady slip have perceptual value

    The search for pain biomarkers in the human brain

    Get PDF
    Non-invasive functional brain imaging is used more than ever to investigate pain in health and disease, with the prospect of finding new means to alleviate pain and improve patient wellbeing. The observation that several brain areas are activated by transient painful stimuli, and that the magnitude of this activity is often graded with pain intensity, has prompted researchers to extract features of brain activity that could serve as biomarkers to measure pain objectively. However, most of the brain responses observed when pain is present can also be observed when pain is absent. For example, similar brain responses can be elicited by salient but non-painful auditory, tactile and visual stimuli, and such responses can even be recorded in patients with congenital analgesia. Thus, as argued in this review, there is still disagreement on the degree to which current measures of brain activity exactly relate to pain. Furthermore, whether more recent analysis techniques can be used to identify distributed patterns of brain activity specific for pain can be only warranted using carefully designed control conditions. On a more general level, the clinical utility of current pain biomarkers derived from human functional neuroimaging appears to be overstated, and evidence for their efficacy in real-life clinical conditions is scarce. Rather than searching for biomarkers of pain perception, several researchers are developing biomarkers to achieve mechanism-based stratification of pain conditions, predict response to medication and offer personalized treatments. Initial results with promising clinical perspectives need to be further tested for replicability and generalizability
    corecore