
Title Distinct Features of Auditory Steady-State Responses as
Compared to Transient Event-Related Potentials

Author(s) Zhang, L; PENG, W; Zhang, Z; Hu, L; Mouraux, A

Citation PLoS ONE, 2013, v. 8, p. e69164

Issued Date 2013

URL http://hdl.handle.net/10722/189063

Rights Creative Commons: Attribution 3.0 Hong Kong License



Distinct Features of Auditory Steady-State Responses as
Compared to Transient Event-Related Potentials
Li Zhang1, Weiwei Peng2, Zhiguo Zhang3, Li Hu1*

1 Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China, 2Department of Orthopaedics

and Traumatology, The University of Hong Kong, Hong Kong, China, 3Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong,

China

Abstract

Transient event-related potentials (ERPs) and steady-state responses (SSRs) have been popularly employed to investigate
the function of the human brain, but their relationship still remains a matter of debate. Some researchers believed that SSRs
could be explained by the linear summation of successive transient ERPs (superposition hypothesis), while others believed
that SSRs were the result of the entrainment of a neural rhythm driven by the periodic repetition of a sensory stimulus
(oscillatory entrainment hypothesis). In the present study, taking auditory modality as an example, we aimed to clarify the
distinct features of SSRs, evoked by the 40-Hz and 60-Hz periodic auditory stimulation, as compared to transient ERPs,
evoked by a single click. We observed that (1) SSRs were mainly generated by phase synchronization, while late latency
responses (LLRs) in transient ERPs were mainly generated by power enhancement; (2) scalp topographies of LLRs in
transient ERPs were markedly different from those of SSRs; (3) the powers of both 40-Hz and 60-Hz SSRs were significantly
correlated, while they were not significantly correlated with the N1 power in transient ERPs; (4) whereas SSRs were
dominantly modulated by stimulus intensity, middle latency responses (MLRs) were not significantly modulated by both
stimulus intensity and subjective loudness judgment, and LLRs were significantly modulated by subjective loudness
judgment even within the same stimulus intensity. All these findings indicated that high-frequency SSRs were different from
both MLRs and LLRs in transient ERPs, thus supporting the possibility of oscillatory entrainment hypothesis to the
generation of SSRs. Therefore, SSRs could be used to explore distinct neural responses as compared to transient ERPs, and
help us reveal novel and reliable neural mechanisms of the human brain.
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Introduction

The presentation of a transient sensory event would disturb the

spontaneous electroencephalographic (EEG) activity and evoke the

event-related potentials (ERPs) that are time-locked and phase-

locked to the sudden onset of the sensory stimulus [1,2]. As one of

the most widely-used non-invasive neurophysiologic approaches to

study the functions of the human brain, transient ERPs are

normally identified in the time domain as a series of monophasic

deflections, which are characterized by their polarity, latency,

amplitude, and scalp distribution [1,3]. When presenting a long-

lasting periodic repetition of a sensory stimulus, the evoked brain

responses attained a steady-state regime (termed steady-state

responses, SSRs), in which the amplitude and phase of the

constituent frequency features are approximately constant over

time [4]. SSRs are composed of a series of identical/similar

temporal waveforms, and are normally identified in the frequency

domain as peaks appearing at the frequency (and/or its

harmonics) of the repeated stimulus, which are characterized by

their power and scalp distribution [5]. For this reason, SSRs can

be quantified unequivocally as compared to the transient ERPs,

and capture several important advantages as summarized in Colon

et al [6]. Most importantly, SSRs exhibit a high signal-to-noise

ratio (SNR), indicating that a shorter time of data collection is

needed to obtain reliable signals [6–8].

Although transient ERPs and SSRs have been popularly

employed by physiologists, psychologists, and physicians for their

respective applications [9–13], their relationship remains a matter

of debate [5]. While many researchers believe that SSRs are

simply the result of the linear summation of successive transient

brain responses evoked by the long-lasting periodic repetition of a

sensory stimulus (superposition hypothesis) [14–18], others support

the concept that SSRs are attributed to the stimulus-driven

entrainment of an oscillatory network of neurons driven by the

periodic repetition of a sensory stimulus (oscillatory entrainment

mechanism) [19–23].

The superimposition hypothesis, which assumes that the SSRs

result from the same neural activities that underlie the transient

ERPs, however overlap in time and space, has been supported by

findings of strong resemblance between both types of evoked

responses [14–18]. Specifically, to support the superposition

hypothesis, it has been reported that the auditory SSRs evoked

by stimulation of 40 Hz could be largely explained by the linear

sum of transient auditory ERPs, e.g., auditory brainstem response

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e69164



and MLRs [14,17,24], and the visual SSRs elicited by a

checkerboard stimulation reversing at different rates can be

explained by the temporal superposition of transient visual ERPs

[15].

This superposition hypothesis was challenged by the oscillatory

entrainment hypothesis, which supported the idea that SSRs were

the result of the entrainment of a neural rhythm driven by the

periodic repetition of a sensory stimulus [19–21]. In this view,

SSRs would reflect the ability of neurons to oscillate at particular

frequencies (resonant frequencies) coded by the external periodic

stimulation [6,8], thus contributing to a markedly great magnitude

of SSRs evoked by a sensory stimulus at the resonant frequencies

compared with their adjacent frequencies. For example, a clear

peak appearing at 10 Hz and 40 Hz was frequently reported in

visual and auditory SSRs in their respective spectra [17,21,25].

According to the oscillatory entrainment hypothesis, the neural

activity captured by SSRs could be significantly different from that

reflected in transient ERPs [4], and they may be generated from

distinct neural sources (e.g., the transient auditory ERPs and SSRs

were generated from different sources in the auditory cortex)

[22,23]. Indeed, the coexistence of superimposition of transient

ERPs and synchronized oscillations has been suggested as an

alternative explanation to the generation of SSRs [5]. Specifically,

SSRs may be mainly generated from the superimposition of

transient ERPs elicited by the stimulus at a given frequency, while

reflecting the oscillatory entrainment driven by the stimulus at

another frequency [5].

Clarifying the relationship between SSRs and transient ERPs is

important to reveal their functional significance in both basic and

clinical studies. Taking auditory modality as an example, we

aimed to (1) test whether SSRs can be explained by the linear

superposition of transient ERPs or the oscillatory entrainment of

neurons, resonating at the frequency of stimulation, and to (2)

explore, whether the SSRs reflect, at least partially, neural activity,

which is distinct from transient ERPs. The temporal, spectral, and

spatial characteristics of transient auditory ERPs elicited by a

single click were explored and compared with those of SSRs

evoked by 40-Hz and 60-Hz periodic stimulation.

Materials and Methods

Subjects
Nineteen normal-hearing healthy subjects (10 females), aged

between 19 and 24 years (21.961.6, mean 6 SD), took part in the

study. All subjects gave their written informed consent and were

paid for their participation. The local ethics committee of

Southwest University (Chongqing, China) approved the proce-

dures, which were in accordance with the standards of the

Declaration of Helsinki.

Auditory Stimulation
Auditory stimuli were sound pulses with 1-ms duration,

delivered binaurally through headphones. The sound pulses were

presented in three types: single pulse (S1: transient stimuli), 40

consecutive auditory pulses with a repetition rate of 40 Hz (S2: 40-

Hz rapid periodic stimuli with train duration of 1 s), and 60

consecutive auditory pulses with a repetition rate of 60 Hz (S3: 60-

Hz rapid periodic stimuli with train duration of 1 s). The stimuli

were presented at the intensities of 6, 20, and 26 dB above

individual sensation level (dB SL) (i.e., I1 = 6 dB SL, I2 = 20 dB

SL, and I3= 26 dB SL; Fig. 1).

Experimental Design
Subjects were seated in a comfortable chair in a silent, shielded

room, and were asked to focus their attention on the occurrence of

each stimulus. Stimuli of the same type were presented in three

blocks in counterbalanced order between participants. In each

block 20 stimuli at each of the three intensities (I1–I3) were

presented in random order with a randomized inter-stimulus

interval between 8 s and 10 s. This resulted in a total of 180

stimulus trials for each subject (20 trials63 intensities63 types).

Subjects were prompted by a text cue to verbally report the

subjective loudness judgment 3 s after each stimulus, using a

numerical rating scale ranging from 0 (no sound) to 10 (unbearable

sound).

EEG Recording
The EEG data were recorded using a 64-channel Brain

Products system (pass band: 0.01–100 Hz, sampling rate:

500 Hz), connected to a standard EEG cap according to the

international 10–20 system. The left mastoid was used as reference

channel, and all channels impedances were kept lower than 10 kV.
To monitor ocular movements and eye blinks, electro-oculo-

graphic (EOG) signals were simultaneously recorded from four

surface electrodes, one pair placed over the higher and lower

eyelid, the other pair placed 1 cm lateral to the outer canthus of

the left and right eye.

EEG Data Analysis
Preprocessing. EEG data were imported and preprocessed

using EEGLAB [26], an open source toolbox running under the

MATLAB environment. Continuous EEG data were bandpass

filtered between 1 and 100 Hz. EEG epochs were extracted using

a time window of 3000 ms (1000 ms pre-stimulus and 2000 ms

post-stimulus), and baseline corrected using the pre-stimulus time

interval. Epoched trials contaminated by eye-blinks and move-

ments were corrected using an Independent Component Analysis

algorithm [26–28]. In all datasets, independent components with a

Figure 1. Transient and rapid periodic auditory stimulation. Transient auditory stimuli are 1-ms duration clicks, and rapid periodic auditory
stimuli are trains of 1-ms duration clicks that vary in rate of presentation (40 and 60 Hz). The duration of the click train is 1000 ms for both 40-Hz and
60-Hz stimuli. Each type of stimuli (S1: transient; S2: 40-Hz periodic; S3: 60-Hz periodic) are presented at three different intensities (I1 = 6 dB SL,
I2 = 20 dB SL, and I3 = 26 dB SL) and delivered through headphones.
doi:10.1371/journal.pone.0069164.g001

Comparison between SSRs and Transient ERPs
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large EOG channel contribution and a frontal scalp distribution

were removed. After Independent Component Analysis and

additional baseline correction, EEG trials were re-referenced to

the bilateral mastoid electrodes.

Time domain analysis. For each subject and each condition

(3 stimulus types63 stimulus intensities), artifact-free EEG epochs

were averaged to attenuate the contribution of activities non-

phase-locked to the onset of the stimulus. The obtained averaged

waveforms were lowpass filtered at 30 Hz (zero-phase digital

filtering) [29] to emphasize the ERPs evoked by the onset of

auditory stimuli. For S1, the averaged waveforms were bandpass

filtered between 35 and 45 Hz and between 55 and 65 Hz (zero-

phase digital filtering) to highlight the MLRs around 40 Hz and

60 Hz respectively. For S2 and S3, the obtained averaged

Figure 2. Event-related potentials (ERPs) elicited by transient and periodic auditory stimulation. Waveforms (recorded at electrode Fz)
obtained following transient, 40-Hz periodic, and 60-Hz periodic stimulation are shown in blue, red, and green respectively. The onset of both
transient and periodic stimulation elicited clear ERPs consisting a dominant negative peak followed by a positive peak after the use of 1–30 Hz
bandpass filter. Even with a low SNR, the middle latency responses (MLRs, i.e., gamma band oscillations) were clearly presented around both 40 Hz
and 60 Hz at the early latencies (10–100 ms). Steady-state brain responses, synchronized to 40-Hz and 60-Hz periodic auditory stimulation, were
clearly presented using a 35–45 Hz and 55–65 Hz bandpass filter respectively.
doi:10.1371/journal.pone.0069164.g002
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waveforms were respectively bandpass filtered between 35 and

45 Hz and between 55 and 65 Hz (zero-phase digital filtering)

[29] to extract SSRs, synchronized to 40-Hz and 60-Hz rapid

periodic stimulation.

The peak latency and baseline-to-peak amplitude of N1 and P2

were measured at Fz for each subject, and then were compared

using a 3-level (stimulus type: S1, S2, S3) one-way repeated-

measures analysis of variance (ANOVA) with a statistical

significance level of 0.05. When the main effect of the ANOVA

was significant, Tukey post hoc multiple comparisons were

performed.

The amplitudes of MLRs and LLRs to transient stimulation, as

well as SSRs to 40-Hz and 60-Hz periodic stimulation, were

measured at Fz for each subject (MLRs [absolute value]: 10–

100 ms; LLRs: 110–170 ms; SSRs [absolute value]: 0–1000 ms).

The amplitudes at different stimulus intensities were compared

using the 3-level (I1, I2, and I3) one-way repeated-measures

ANOVA.

Time-frequency domain analysis. Time-frequency distri-

butions (TFDs) of auditory-evoked, auditory-induced, and phase-

locking value of brain responses elicited by transient and periodic

Table 1. The steady-state power, and the latency and
amplitude of N1 and P2 (6 SD) at different stimulus types
(S1–S3). Right columns report ANOVA results.

Stimulus type ANOVA

S1 S2 S3 F P

Steady-state power (mV2) – 0.3160.15 0.2260.13 – –

N1 latency (ms) 145617 156613 157614 3.520 0.037

N1 amplitude (mV) 26.4762.4927.1262.7628.4062.97 2.431 0.098

P2 latency (ms) 296652 297655 294655 0.015 0.985

P2 amplitude (mV) 5.0662.44 4.8562.36 4.9762.47 0.035 0.965

doi:10.1371/journal.pone.0069164.t001

Figure 3. Event-related potentials (ERPs) elicited by transient and periodic auditory stimulation at different stimulus intensities (I1–
I3). Waveforms (recorded at electrode Fz) obtained following both transient and periodic auditory stimulation at stimulus intensities of I1, I2, and I3
are shown in black, yellow, and cyan respectively. Amplitudes of late latency responses (LLRs, for S1, S2, and S3) and SSRs (40-Hz for S2 and 60-Hz for
S3) were significantly different across different stimulus intensities (I1–I3; P,0.05 for all comparisons), while amplitudes of middle latency responses
(MLRs, between 35 and 45 Hz and between 55 and 65 Hz for S1) were not significantly different across different stimulus intensities (I1–I3; P.0.05 for
both comparisons).
doi:10.1371/journal.pone.0069164.g003

Comparison between SSRs and Transient ERPs

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e69164



auditory stimulation were calculated using a windowed Fourier

transform (WFT) with a fixed 200-ms width Hanning window.

Such a time-frequency analysis was selected to achieve a good

tradeoff between time resolution and frequency resolution in a

wide range of EEG frequencies [30]. It thus yielded a complex

time-frequency spectral estimate F(t, f ) at each point (t, f ) of the
time-frequency plane extending from 21000 ms to 2000 ms (in

steps of 2 ms) in latency, and from 1 to 100 Hz (in steps of 1 Hz) in

the frequency.

For each estimated frequency, TFDs were baseline corrected

using the pre-stimulus interval (pre-stimulus 2800 to 2200 ms) to

calculate the relative change of power (expressed as ER%),

according to the formula:

ER%(t,f )~½P(t,f ){R(f )�=R(f )|100 ð1Þ

where P(t, f )~DF (t, f )D2 is the power spectral density at a given

Table 2. Amplitudes of transient responses and steady-state responses at different stimulus intensities and ANOVA results.

Stimulus intensity ANOVA

I1 I2 I3 F P

Stimulus
type

S1 LLRs (mV) 22.6161.92 25.5362.67 25.9362.62 10.6 ,0.001

MLRs (,40 Hz, mV2) 0.2060.12 0.2960.17 0.2560.12 2.17 0.124

MLRs (,60 Hz, mV2) 0.1560.09 0.1560.07 0.2060.07 2.77 0.072

S2 LLRs (mV) 20.2062.52 26.3663.23 28.2263.06 38.46 ,0.001

SSRs (,40 Hz, mV2) 0.2160.04 0.3760.11 0.4660.13 28.98 ,0.001

S3 LLRs (mV) 0.1362.09 28.1463.03 29.7463.84 56.43 ,0.001

SSRs (,60 Hz, mV2) 0.1660.04 0.2860.09 0.3160.11 16.83 ,0.001

doi:10.1371/journal.pone.0069164.t002

Figure 4. Time-frequency distributions (evoked, induced, and PLV) of brain responses elicited by transient and periodic auditory
stimulation. For all types of stimulation, time-frequency distributions (recorded at electrode Fz) of auditory-evoked responses, auditory-induced
modulation of EEG oscillatory magnitudes, and PLV are displayed from top to bottom in each panel. x-axis, time (ms); y-axis, frequency (Hz). The color
scale represents the average change of the corresponding value to the presentation of stimulation, relative to the pre-stimulus interval. The regions
circled by purple lines had significantly larger values than those in the pre-stimulus interval (P#0.001). Whereas the onset of all stimulation elicited
the enhancement of evoked TFDs, induced TFDs, and PLV (1–500 ms in latency and 1–10 Hz in frequency), both 40-Hz and 60-Hz periodic stimulation
did so only for evoked TFDs and PLV (around 40 Hz and 60 Hz respectively) (P#0.001). For each type of stimulation and each type of TFDs, the scalp
topography was measured at the corresponding TF-ROI (transient: 1–500 ms in latency and 1–10 Hz in frequency; 40-Hz periodic: 1–1000 ms in
latency and 35–45 Hz in frequency; 60-Hz periodic: 1–1000 ms in latency and 55–65 Hz in frequency). Note that scalp topographies elicited by both
40-Hz and 60-Hz periodic stimulation were similarly maximal at frontal region (near Fz), while scalp topographies elicited by transient stimulation
were maximal at vertex and bilateral temporal regions.
doi:10.1371/journal.pone.0069164.g004
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time-frequency point (t, f ), and R(f ) is the averaged power

spectral density of the signal enclosed within the pre-stimulus

reference interval (2800 to 2200 ms before the onset of the

stimulation), for each estimated frequency f .

It should be noted that the auditory-evoked TFDs, which only

contained phase-locked neural activities (ERPs), were obtained by

performing WFT on the averaged waveform, while the auditory-

induced TFDs, which contained both phase-locked (ERPs) and

non-phase-locked (event-related synchronization and desynchro-

nization) neural responses, were obtained by performing WFT on

single-trial EEG responses and averaging across trial. Further-

more, the phase-locking value (PLV) [31], a measure of phase

synchrony across trials, was calculated for each subject and

stimulus type, as follows:

PLV(t,f )~D
1

N

XN

n~1

Fn(t,f )

DFn(t,f )D
D{Y(f ) ð2Þ

Where N is the number of trials and Y(f ) is the average PLV of

the pre-stimulus interval (2800 to2200 ms before the onset of the

stimulation) for each estimated frequency f .

To test whether the brain responses within the post-stimulus

time-frequency region were significantly different from those

within the pre-stimulus time-frequency region, a bootstrapping

method [26,32] was performed on the obtained TFDs. For each

time-frequency pixel in the post-stimulus interval, investigated

populations and reference populations were collected from 19

subjects. The null hypothesis was that there was no mean

difference between these two populations. Then pseudo-t statistic

between the two populations was calculated, and we estimated the

probability distribution of the pseudo-t statistic from the reference

population by drawing with replacement two populations of the

same size. The permutation was executed for 5000 times. The

distribution of the pseudo-t statistics from the reference population

and the bootstrap P value for the null hypothesis were generated.

This procedure yielded time-frequency regions, in which the TFDs

were significantly different relative to the reference region [33,34].

To address the problem of multiple comparisons, the significance

level (P value) was corrected using a false discovery rate procedure

[32].

Based on the time-frequency features of LLRs, 40-Hz SSRs,

and 60-Hz SSRs, the time-frequency region-of-interest (TF-ROI)

was respectively defined as follows: S1: 1–500 ms in latency and 1–

10 Hz in frequency; S2: 1–1000 ms in latency and 35–45 Hz in

frequency; S3: 1–1000 ms in latency and 55–65 Hz in frequency.

Within each TF-ROI, the magnitude of brain responses was

estimated by computing the mean of neural activities from all

included time-frequency pixels.

To assess the relationship between the scalp topography of

transient responses (especially for MLRs) and SSRs, we (1)

estimated the scalp topographies of transient responses (S1) from

the magnitudes of brain responses for all channels at the time

interval of 10–100 ms of each frequency (ranging from 1 to

100 Hz), (2) estimated the scalp topographies of SSRs from the

magnitudes of brain responses for all channels within their

respective TF-ROI (S2: 1–1000 ms in latency and 35–45 Hz in

frequency; S3: 1–1000 ms in latency and 55–65 Hz in frequency),

and (3) calculated the correlation coefficients and their significance

between the scalp topographies of transient responses at each

frequency and those of 40-Hz and 60-Hz SSRs respectively.

To test the relationship between the amplitudes of SSRs and

transient responses, we first performed the correlation analysis (1)

between N1 power in S1 (the square of N1 amplitude) and 40-Hz

steady-state power in S2, (2) between N1 power in S1 and 60-Hz

steady-state power in S3, (3) between 40-Hz steady-state power in

S2 and 60-Hz steady-state power in S3.

To explore the relationship between auditory-evoked responses

and the stimulus intensity as well as the subjective loudness

judgment, for each subject and each stimulus type (S1–S3), we first

performed a linear regression analysis between the magnitude of

time-frequency representation (measured at Fz) and the subjective

loudness judgment across all single trials for each time-frequency

pixel. This procedure yielded time-frequency distribution of

regression coefficient, which coded the strength and direction of

the relationship between the magnitude of time-frequency

Figure 5. The relationship between the scalp topographies of
transient responses and steady-state responses. The correlation
coefficients between the scalp topographies of transient responses at
the time interval of 10–100 ms of each frequency (ranging from 1 to
100 Hz) and those of 40-Hz and 60-Hz SSRs are respectively showed in
blue and green lines (middle panel). The frequencies showing the
highest correlation coefficients between transient responses and 40-Hz
and 60-Hz SSRs were respectively observed at 44 Hz and 51 Hz, which
are marked using red circles (middle panel). The scalp topographies of
40-Hz and 60-Hz SSRs showed a similar maximum at frontal region (near
Fz) (top left and top right panels respectively). Even with a low SNR, the
scalp topographies of transient responses at 44 Hz and 51 Hz also
showed a similar maximum at frontal region (near F1) (bottom left and
bottom right panels respectively).In Fig. 6, we showed that no
significant correlation was observed when examining the relationship
between N1 power and 40-Hz steady-state power in S2 (top left panel
of Fig. 6; R =20.08, P = 0.74), as well as between N1 power and 60-Hz
steady-state power in S3 (top middle panel of Fig. 6; R =20.01,
P = 0.97). In contrast, significant correlation was observed when
examining the relationship between 40-Hz steady-state power in S2
and 60-Hz steady-state power in S3 (top right panel of Fig. 6; R = 0.71,
P,0.001).
doi:10.1371/journal.pone.0069164.g005
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representation and the subjective loudness judgment as a function

of time and frequency for each subject. The single-subject time-

frequency distribution of regression coefficient was averaged to

obtain the group-level time-frequency distribution of regression

coefficient. For each subject, the mean of regression coefficients

from all included time-frequency pixels in each pre-defined TF-

ROI (LLRs: 1–500 ms in latency and 1–10 Hz in frequency; 40-

Hz SSRs: 1–1000 ms in latency and 35–45 Hz in frequency; 60-

Hz SSRs: 1–1000 ms in latency and 55–65 Hz in frequency) were

calculated, and were compared against zero using a one-sample t-

test. In addition, to rule out the influence of the variability of

stimulus intensity, we removed (1) the mean magnitude of time-

frequency representation from single-trial time-frequency repre-

sentations and (2) the mean rating of subjective loudness judgment

from single-trial ratings for each subject and each stimulus

intensity, and performed the same linear regression analysis. The

mean of regression coefficients from all included time-frequency

pixels in the same TF-ROIs were calculated, and were compared

against zero using a one-sample t-test.

Results

Electrophysiological Results: Time Domain
Fig. 2 displayed the grand averaged ERP waveforms measured

at Fz for different stimulus types (S1–S3; from top to bottom).

Extracted using a 1–30 Hz bandpass filter, ERPs elicited by the

onset of auditory stimuli, showed a dominant negative peak at

145617 ms, 156613 ms and 157614 ms, followed by a clear

positive peak at 296652 ms, 297655 ms and 294655 ms (for S1,

S2, and S3 respectively). Across subjects, latencies and amplitudes

of N1 and P2 were summarized in Table 1, and all these

parameters, except N1 latency, were not significantly different

across different stimulus types (S1–S3; P.0.05 for all compari-

sons). Even with a low SNR, the MLRs (i.e., gamma band

oscillations) were clearly presented around both 40 Hz and 60 Hz

at the early latencies (10–100 ms) (middle right and bottom right

panels of Fig. 2). Steady-state brain responses, synchronized to 40-

Hz and 60-Hz periodic auditory stimulation, were extracted using

a narrow 35–45 Hz and 55–65 Hz bandpass filter for S2 and S3

respectively (middle right and bottom right panels of Fig. 2).

Across subjects, amplitude of transient responses (MLRs and

LLRs) and SSRs (40 Hz and 60 Hz) at different stimulus

intensities (I1–I3) in each stimulus type (S1–S3) were summarized

in Table 2. As displayed in Fig. 3, amplitudes of LLRs (for S1, S2,

Figure 6. Correlations of power between transient responses and steady-state responses. No significant correlation was observed when
examining the relationship between N1 power and 40-Hz steady-state power in S2 (left panel; R =20.08, P = 0.74), as well as between N1 power and
60-Hz steady-state power in S3 (middle panel; R =20.01, P = 0.97). In contrast, significant correlation was observed when examining the relationship
between 40-Hz steady-state power in S2 and 60-Hz steady-state power in S3 (right panel; R = 0.71, P,0.001). Each green point represents one subject,
and the red lines represent the best linear fit.
doi:10.1371/journal.pone.0069164.g006

Figure 7. Relationship between the subjective loudness judgment and brain responses elicited by transient and periodic auditory
stimulation. The mean of regression coefficients across subjects for LLRs, 40-Hz SSRs, and 60-Hz SSRs within their respective TF-ROIs were all
significantly larger than zero (P,0.001, P,0.001, and P= 0.006 respectively; left panel). After removing the mean magnitude of time-frequency
representation from single-trial time-frequency representations for each subject and each stimulus intensity, the mean of regression coefficients
across subjects for LLRs was still significantly larger than zero (P = 0.02), but for 40-Hz SSRs, and 60-Hz SSRs were not (P = 0.31 and P= 0.53
respectively) (right panel). Error bar represents the standard deviation (SD) of regression coefficients across subjects for each condition.
doi:10.1371/journal.pone.0069164.g007
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and S3) and SSRs (40-Hz for S2 and 60-Hz for S3) were

significantly different across different stimulus intensities (I1–I3;

P,0.05 for all comparisons), while amplitudes of MLRs (between

35 and 45 Hz and between 55 and 65 Hz for S1) were not

significantly different across different stimulus intensities (I1–I3;

P.0.05 for both comparisons) (Fig. 3).

Electrophysiological Results: Time Frequency Domain
Fig. 4 displayed the TFDs (measured at Fz) of auditory-evoked,

auditory-induced, and PLV of brain responses elicited by transient

and periodic auditory stimulation (from top to bottom of each

panel). The time-frequency regions with significantly larger values

than those in the pre-stimulus reference interval, were circled with

white lines (P#0.001). Whereas the onset of all stimulation elicited

the enhancement of evoked TFDs, induced TFDs, and PLV (1–

500 ms in latency and 1–10 Hz in frequency), both 40-Hz and 60-

Hz periodic stimulation did so only for evoked TFDs and PLV

(around 40 Hz and 60 Hz respectively) (P#0.001). For each type

of stimulation and each type of TFDs, the scalp topography,

measured at the corresponding TF-ROI, was presented on the top

of Fig. 4. Note that the scalp topographies elicited by both 40-Hz

and 60-Hz periodic stimulation were similarly maximal at frontal

region (near Fz), while the scalp topographies elicited by transient

stimulation were maximal at vertex and bilateral temporal regions.

Fig. 5 showed that the highest correlation coefficients between

scalp topographies of transient responses (especially for MLRs) and

of 40-Hz and 60-Hz SSRs were similarly maximal at 44 Hz and

51 Hz (R= 0.62, P,0.05 and R=0.56, P,0.05 for 40-Hz and

60-Hz SSRs respectively at 44 Hz; R= 0.55, P,0.05 and

R=0.63, P,0.05 for 40-Hz and 60-Hz SSRs respectively at

51 Hz) (Fig. 5). Even with a low SNR, scalp topographies at

gamma band (44 Hz and 51 Hz, MLRs) elicited by transient

stimulation were similarly maximal at frontal region (near F1).

In Fig. 7, we showed the mean of regression coefficients across

subjects for LLRs (0.1560.09; P,0.001, one-sample t-test), 40-Hz

SSRs (0.1760.15; P,0.001), and 60-Hz SSRs (0.1360.18;

P = 0.006) within their respective TF-ROIs (LLRs: 1–500 ms in

latency and 1–10 Hz in frequency; 40-Hz SSRs: 1–1000 ms in

latency and 35–45 Hz in frequency; 60-Hz SSRs: 1–1000 ms in

latency and 55–65 Hz in frequency). After removing the mean

magnitude of time-frequency representation from single-trial time-

frequency representations for each subject and each stimulus

intensity, the mean of regression coefficients across subjects for

LLRs, 40-Hz SSRs, and 60-Hz SSRs were respectively

0.0560.08, 20.0360.13, and 20.0260.14. Note that the

regression coefficients for LLRs were still significantly and

positively correlated with the subjective loudness judgment

(P = 0.02), but not for 40-Hz and 60-Hz SSRs (P= 0.31 and

P=0.53 respectively). These results indicated that SSRs were

dominantly modulated by stimulus intensity, but not modulated by

subjective loudness judgment within the same stimulus intensity. In

contrast, LLRs were not only strongly modulated by stimulus

intensity, but also significantly modulated by subjective loudness

judgment within the same stimulus intensity.

Discussion

In this study, taking auditory modality as an example, we

systematically examined the relationship between transient ERPs

and SSRs. We obtained the following five findings: (1) the

amplitudes of LLRs in transient ERPs and SSRs were similarly

and significantly different at different stimulus intensities, while

amplitudes of MLRs in transient ERPs, even showing similar

temporal and spectral features with SSRs, were not significantly

different (Figs. 2–3); (2) whereas significant power enhancement of

LLRs in transient ERPs was observed at both single-trial and

averaged levels, which was not observed for MLRs in transient

ERPs, significant enhancement of SSR power was only observed

at the averaged level, thus confirming the important contribution

of phase synchronization, but not power enhancement, to the

generation of SSRs (Fig. 4); (3) Scalp topographies of LLRs in

transient ERPs (maximal at vertex and bilateral temporal regions)

were markedly different from those of SSRs (maximal at frontal

region), while scalp topographies of MLRs in transient ERPs were

similar with those of SSRs (maximal at frontal region), even with a

low SNR (Figs. 4–5); (4) the powers of both 40-Hz and 60-Hz

SSRs were significantly correlated, while they were not signifi-

cantly correlated with N1 power in transient ERPs (Fig. 6); (5) the

amplitude of SSRs was significantly modulated by stimulus

intensity, but not significantly modulated by subjective loudness

judgment within the same stimulus intensity, while the amplitude

of LLRs in transient ERPs was not only significantly modulated by

stimulus intensity, but also significantly modulated by subjective

loudness judgment within the same stimulus intensity (Fig. 7). All

these findings indicated that SSRs at high frequencies (e.g., 40 and

60 Hz) were markedly different with MLRs and LLRs in transient

ERPs. SSRs at high frequencies (e.g., 40 and 60 Hz) were not

likely generated from linear superposition of series of MLRs and

LLRs in transient ERPs using the presented experimental

paradigm (Fig. 1). Therefore, along with the high SNR nature,

SSRs, represented as distinct neural responses from transient

ERPs, could be of great importance to study neural mechanisms of

the human brain in both basic and clinical studies.

Since Regan firstly described the recording of SSRs as an

alternative approach to investigate the neural activities in EEG

[35], an increasing number of studies have used SSRs to explore

the neural activities evoked by periodic repetition of various

sensory stimuli (e.g., visual, auditory, somatosensory, and noci-

ceptive) [13–15,36]. However, we are not clear about how SSRs

emerge from EEG, and it still remains a debate about the

relationship between SSRs and transient ERPs [5]. As one of the

most popular theories, superposition hypothesis suggested that

SSRs evoked by periodic repetition of sensory stimuli were

composed of the linear summation of successive transient ERPs

evoked by single sensory stimulus [14–18,24,37]. This hypothesis

was normally supported by the evidence that SSRs, evoked by

high-frequency auditory and visual stimuli, were consistent with

the waveforms synthesized by linear summation of transient ERPs

[14–18,24,37]. According to this hypothesis, SSRs and transient

ERPs reflected the same neural activities, and represented the

same underlying neural mechanisms [14–18,24,37]. This super-

position hypothesis was challenged by the oscillatory entrainment

hypothesis, which indicated that SSRs reflected the entrainment or

resonance of a population of neurons responding to the periodic

repetition of sensory stimuli [19–23]. According to this hypothesis,

SSRs and transient ERPs should reflect distinct neural activities

that may be generated from different neural sources, thus

representing different underlying neural mechanisms [19–23].

To clarify the relationship between SSRs and transient ERPs,

the temporal, spectral, and spatial characteristics of SSRs evoked

by 40-Hz and 60-Hz periodic auditory stimulation were studied

and compared with those of transient auditory ERPs elicited by a

single click. SSRs at high frequencies (e.g., 40 and 60 Hz) were

greatly different with LLRs in transient ERPs, and not likely

generated from linear superposition of series of MLRs in transient

ERPs for the following reasons.

First, we observed that the scalp topographies of LLRs and

SSRs were respectively maximal at vertex and bilateral temporal

Comparison between SSRs and Transient ERPs
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regions and at frontal region (near Fz) (Fig. 4). However, even with

a low SNR, scalp topographies of MLRs were maximal at frontal

region, which were similar with those of SSRs (Fig. 5). These

findings were confirmed by the observations from source analysis

[23,38], which suggested that SSRs and LLRs to auditory

stimulation were generated from different parts of the auditory

cortex. SSRs were generated from the primary auditory cortex,

which was more anterior and media compared to the sources of

N1 in transient ERPs (lateral parts of Heschl’s gyrus and the

planum temporale) [38].

Then, similar with previous studies [22,23], we observed

significant correlation between powers of 40-Hz and 60-Hz SSRs,

but not between powers of SSRs and N1 in transient ERPs (Fig. 6).

This result indicated similar power variation of 40-Hz SSRs and

60-Hz SSRs across subjects (i.e., the subject with high 40-Hz

steady-state power would have a high 60-Hz steady-state power,

and vise versa). In contrast, both 40-Hz and 60-Hz SSRs were not

co-varied with the N1 power to transient stimulation (i.e., the

subject with high 40-Hz/60-Hz steady-state power cannot imply a

high power of transient ERPs, and vise versa).In the present study,

time-frequency analysis revealed that the PLV was observed to

mimic the evoked TFDs for both transient ERPs and SSRs (Fig. 4),

while the induced TFDs did not show any significant power

enhancement for SSRs (Fig. 4). These findings indicated that SSRs

were largely contributed by the phase synchronization of the

ongoing EEG activities without large contributions from the new

power evoked by the sensory stimuli [39,40]. In contrast, the

generation of LLRs in transient ERPs was mostly caused by the

newly evoked power. The importance of phase synchronization to

the generation of SSRs may indicate that periodic repetition of

sensory stimuli could introduce the reconstruction of brain

oscillatory network, which was represented as the reorganization

of the phase of the ongoing EEG activities [39,40]. Therefore,

SSRs, mainly contributed by phase synchronization, may express

distinct neural responses from transient ERPs that were mainly

contributed by power enhancement.

Last, LLRs and SSRs were significantly different at different

stimulus intensities (Fig. 3), and significantly and positively

correlated with the subjective loudness judgment (Fig. 7), while

MLRs were not significantly modulated by both stimulus intensity

(Fig. 3) and subjective loudness judgment (Fig. 7). After removing

the effect of stimulus intensity, LLRs were still significantly and

positively correlated with the subjective loudness judgment, while

both 40-Hz and 60-Hz SSRs were not. These results indicated that

(1) SSRs were dominantly modulated by stimulus intensity; (2)

LLRs were significantly modulated by subjective loudness

judgment even within the same stimulus intensity; (3) MLRs were

not significantly modulated by both stimulus intensity and

subjective loudness judgment, which may be caused by the low

SNR of the MLRs. Therefore, even the variance in brain

responses contributed by the stimulus intensity and the variance

contributed by the subjective loudness judgment cannot be entirely

separated, we provided evidence showing that, compared with

SSRs, LLRs were markedly more related to the subjective

loudness judgment.

It should be noted that the validity of superposition hypothesis

was highly depended on the definition of "transient responses"

[15]. If the transient responses were defined as the brain potentials

evoked by isolated and infrequent stimulation, and enough time

should be provided to the sensory system to return to its resting

state before the onset of next stimulus [4,41]. In this case, a long

and variable inter-stimulus interval was normally required to make

sure the sensory system has returned to the resting state and to

elicit the transient responses, even this requirement has been

commonly violated [4]. Based on this definition of transient

responses, a poor reconstruction of SSRs from the linear

superposition of transient responses [15,42] was normally

observed. However, as mentioned in Capilla et al [15], transient

responses can also be defined as the brain potentials evoked by a

single event, either isolated or embedded in a stimulus train. In this

case, a jittered sequence with a mean stimulation frequency close

to the frequency of SSRs could be used to isolate the transient

responses, which were frequency specific. Based on this definition

of transient responses, a linear relationship between SSRs and

frequency specific transient responses was normally observed, thus

supporting the superposition hypothesis [15]. The present study

did not aim to clarify the discrepancy of the definition of ‘‘transient

responses’’, while it should be mentioned that all results and

conclusions of the present study were based on the first definition

of ‘‘transient responses’’.

In conclusion, our results indicated that SSRs at high

frequencies (e.g., 40 and 60 Hz) could not be explained by linear

superposition of series of transient ERPs using the present

experimental design. These findings indicated that SSRs could

reflect neural responses distinct from transient ERPs, and captured

higher SNR compared to MLRs. Such understanding would be of

great importance in both basic and clinical studies since it

provided solid base for the application of SSRs, as a new window

for us, to reveal novel and reliable neural mechanisms of the

human brain.
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