217 research outputs found

    Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi

    Get PDF
    The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1-/- (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H2O2). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H2O2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER. © 2012 Furtado et al

    Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis

    Get PDF
    © 2010 Cascão et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by sustained synovitis. Recently, several studies have proposed neutrophils and Th17 cells as key players in the onset and perpetuation of this disease. The main goal of this work was to determine whether cytokines driving neutrophil and Th17 activation are dysregulated in very early rheumatoid arthritis patients with less than 6 weeks of disease duration and before treatment (VERA). Methods: Cytokines related to neutrophil and Th17 activation were quantified in the serum of VERA and established RA patients and compared with other very early arthritis (VEA) and healthy controls. Synovial fluid (SF) from RA and osteoarthritis (OA) patients was also analyzed. Results: VERA patients had increased serum levels of cytokines promoting Th17 polarization (IL-1b and IL-6), as well as IL-8 and Th17-derived cytokines (IL-17A and IL-22) known to induce neutrophil-mediated inflammation. In established RA this pattern is more evident within the SF. Early treatment with methotrexate or corticosteroids led to clinical improvement but without an impact on the cytokine pattern. Conclusions: VERA patients already display increased levels of cytokines related with Th17 polarization and neutrophil recruitment and activation, a dysregulation also found in SF of established RA. 0 Thus, our data suggest that a cytokine-milieu favoring Th17 and neutrophil activity is an early event in RA pathogenesis.This work was supported by a grant from Sociedade Portuguesa de Reumatologia/Schering-Plough 2005. RAM and RC were funded by Fundação para a Ciência e a Tecnologia (FCT) SFRH/BD/30247/2006 and SFRH/BD/40513/2007, respectively. MMS-C was funded by Marie Curie Intra-European Fellowship PERG-2008-239422 and a EULAR Young Investigator Award

    Natural Form of Noncytolytic Flexible Human Fc as a Long-Acting Carrier of Agonistic Ligand, Erythropoietin

    Get PDF
    Human IgG1 Fc has been widely used as a bioconjugate, but exhibits shortcomings, such as antibody- and complement-mediated cytotoxicity as well as decreased bioactivity, when applied to agonistic proteins. Here, we constructed a nonimmunogenic, noncytolytic and flexible hybrid Fc (hyFc) consisting of IgD and IgG4, and tested its function using erythropoietin (EPO) conjugate, EPO-hyFc. Despite low amino acid homology (20.5%) between IgD Fc and IgG4 Fc, EPO-hyFc retained “Y-shaped” structure and repeated intravenous administrations of EPO-hyFc into monkeys did not generate EPO-hyFc-specific antibody responses. Furthermore, EPO-hyFc could not bind to FcγR I and C1q in contrast to EPO-IgG1 Fc. In addition, EPO-hyFc exhibited better in vitro bioactivity and in vivo bioactivity in rats than EPO-IgG1 Fc, presumably due to the high flexibility of IgD. Moreover, the mean serum half-life of EPO-hyFc(H), a high sialic acid content form of EPO-hyFc, was approximately 2-fold longer than that of the heavily glycosylated EPO, darbepoetin alfa, in rats. More importantly, subcutaneous injection of EPO-hyFc(H) not only induced a significantly greater elevation of serum hemoglobin levels than darbepoetin alfa in both normal rats and cisplatin-induced anemic rats, but also displayed a delayed time to maximal serum level and twice final area-under-the-curve (AUClast). Taken together, hyFc might be a more attractive Fc conjugate for agonistic proteins/peptides than IgG1 Fc due to its capability to elongate their half-lives without inducing host effector functions and hindering bioactivity of fused molecules. Additionally, a head-to-head comparison demonstrated that hyFc-fusion strategy more effectively improved the in vivo bioactivity of EPO than the hyperglycosylation approach

    Antiplasmodial volatile extracts from Cleistopholis patens Engler & Diels and Uvariastrum pierreanum Engl. (Engl. & Diels) (Annonaceae) growing in Cameroon

    Get PDF
    In a search for alternative treatment for malaria, plant-derived essential oils extracted from the stem barks and leaves of Cleistopholis patens and Uvariastrum pierreanum (Annonaceae) were evaluated in vitro for antiplasmodial activity against the W2 strain of Plasmodium falciparum. The oils were obtained from 500 g each of stem barks and leaves, respectively, by hydrodistillation, using a Clevenger-type apparatus with the following yields: 0.23% and 0.19% for C. patens and 0.1% and 0.3% for U. pierreanum (w/w relative to dried material weight). Analysis of 10% (v/v) oil in hexane by gas chromatography and mass spectrometry identified only terpenoids in the oils, with over 81% sesquiterpene hydrocarbons in C. patens extracts and U. pierreanum stem bark oil, while the leaf oil from the latter species was found to contain a majority of monoterpenes. For C. patens, the major components were α-copaene, δ-cadinene, and germacrene D for the stem bark oil and β-caryophyllene, germacrene D, and germacrene B for the leaf oil. The stem bark oil of U. pierreanum was found to contain mainly β-bisabolene and α-bisabolol, while α- and β-pinenes were more abundant in the leaf extract. Concentrations of oils obtained by diluting 1-mg/mL stock solutions were tested against P. falciparum in culture. The oils were active, with IC50 values of 9.19 and 15.19 μg/mL for the stem bark and leaf oils, respectively, of C. patens and 6.08 and 13.96 μg/mL, respectively, for those from U. pierreanum. These results indicate that essential oils may offer a promising alternative for the development of new antimalarials

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments
    corecore