CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi
Authors
PC Campos
MB de Moura
+10 more
GR Franco
C Furtado
M Kunrath-Lima
AM Macedo
CR Machado
IC Mendes
SDJ Pena
MA Rajão
SMR Teixeira
B van Houten
Publication date
2 August 2012
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1-/- (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H2O2). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H2O2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER. © 2012 Furtado et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 01/04/2019
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:0a0d12baf...
Last time updated on 14/10/2017
D-Scholarship@Pitt
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:158...
Last time updated on 19/07/2013
Public Library of Science (PLOS)
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 18/09/2018
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:158...
Last time updated on 15/12/2016
Name not available
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:d-scholarship.pitt.edu:158...
Last time updated on 23/11/2016
The Francis Crick Institute
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/12170...
Last time updated on 16/03/2018