3,651 research outputs found

    The focused ion beam as an integrated circuit restructuring tool

    Get PDF
    One of the capabilities of focused ion beam systems is ion milling. The purpose of this work is to explore this capability as a tool for integrated circuit restructuring. Methods for cutting and joining conductors are needed. Two methods for joining conductors are demonstrated. The first consists of spinning nitrocellulose (a self‐developing resist) on the circuit, ion exposing an area, say, 7×7 μm, then milling a smaller via with sloping sidewalls through the first metal layer down to the second, e‐beam evaporating metal, and then dissolving the nitrocellulose to achieve liftoff. The resistance of these links between two metal levels varied from 1 to 7 Ω. The second, simpler method consists of milling a via with vertical sidewalls down to the lower metal layer, then reducing the milling scan to a smaller area in the center of this via, thereby redepositing the metal from the lower layer on the vertical sidewall. The short circuit thus achieved varied from 0.4 to 1.5 Ω for vias of dimensions 3×3 μm to 1×1 μm, respectively. The time to mill a 1×1 μm via with a 68 keV Ga+ beam, of 220 Pa current is 60 s. In a system optimized for this application, this milling time is expected to be reduced by a factor of at least 100. In addition, cuts have been made in 1‐μm‐thick Al films covered by 0.65 μm of SiO2. These cuts have resistances in excess of 20 MΩ. This method of circuit restructuring can work at dimensions a factor of 10 smaller than laser zapping and requires no special sites to be fabricated

    Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition

    Full text link
    We define a correlation function that quantifies the spatial correlation of single-particle displacements in liquids and amorphous materials. We show for an equilibrium liquid that this function is related to fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge and grow on cooling toward the mode coupling critical temperature

    The Magnetic Distortion Calibration System of the LHCb RICH1 Detector

    Get PDF
    The LHCb RICH1 detector uses hybrid photon detectors (HPDs) as its optical sensors. A calibration system has been constructed to provide corrections for distortions that are primarily due to external magnetic fields. We describe here the system design, construction, operation and performance.Comment: 9 pages, 14 figure

    Fabrication of large-area CCD detectors on high-purity, float-zone silicon

    Get PDF
    In this report on the fabrication of a 1024 x 1024 charge coupled device (CCD) imager to be used as a soft x-ray sensor onboard the Advanced X-ray Astronomical Facility (AXAF), the following conclusions were found: the dislocations that limited the performance of the high resistivity imager were characterized; the sources of stress were identified and the dislocations found were eliminated; and a charge transfer inefficiency (CTI) of 10(exp -6) and read noise as low as 1.3/e was demonstrated. This sensor must have low noise and a low CTI and must be radiation hardened to withstand any radiation damage from a space environment

    Growing Correlation Length on Cooling Below the Onset of Caging in a Simulated Glass-Forming Liquid

    Get PDF
    We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporall correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale of this function has a maximum as a function of time which increases steadily beyond the characteristic length of the static pair correlation function g(r)g(r) in the temperature range approaching the mode coupling temperature from above

    Searching for Earth analogues around the nearest stars: the disk age-metallicity relation and the age distribution in the Solar Neighbourhood

    Full text link
    The chemical composition of Earth's atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age distribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.Comment: Accepted for publication in Ap

    String-like Clusters and Cooperative Motion in a Model Glass-Forming Liquid

    Full text link
    A large-scale molecular dynamics simulation is performed on a glass-forming Lennard-Jones mixture to determine the nature of dynamical heterogeneities which arise in this model fragile liquid. We observe that the most mobile particles exhibit a cooperative motion in the form of string-like paths (``strings'') whose mean length and radius of gyration increase as the liquid is cooled. The length distribution of the strings is found to be similar to that expected for the equilibrium polymerization of linear polymer chains.Comment: 6 pages of RevTex, 6 postscript figures, uses epsf.st

    Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics

    Get PDF
    This paper is the fifth in a series exploring the physical consequences of the solidity of glass-forming liquids. Paper IV proposed a model where the density field is described by a time-dependent Ginzburg-Landau equation of the nonconserved type with rates in kk space of the form Γ0+Dk2\Gamma_0+Dk^2. The model assumes that DΓ0a2D\gg\Gamma_0a^2 where aa is the average intermolecular distance; this inequality expresses a long-wavelength dominance of the dynamics which implies that the Hamiltonian (free energy) to a good approximation may be taken to be ultralocal. In the present paper we argue that this is the simplest model consistent with the following three experimental facts: 1) Viscous liquids approaching the glass transition do not develop long-range order; 2) The glass has lower compressibility than the liquid; 3) The alpha process involves several decades of relaxation times shorter than the mean relaxation time. The paper proceeds to list six further experimental facts characterizing equilibrium viscous liquid dynamics and shows that these are readily understood in terms of the model; some are direct consequences, others are quite natural when viewed in light of the model

    Simulation of thermal conductivity and heat transport in solids

    Full text link
    Using molecular dynamics (MD) with classical interaction potentials we present calculations of thermal conductivity and heat transport in crystals and glasses. Inducing shock waves and heat pulses into the systems we study the spreading of energy and temperature over the configurations. Phonon decay is investigated by exciting single modes in the structures and monitoring the time evolution of the amplitude using MD in a microcanonical ensemble. As examples, crystalline and amorphous modifications of Selenium and SiO2\rm{SiO_2} are considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in PR
    corecore