6 research outputs found

    Flow cytometry approach for studying the interaction between Bacillus mojavensis and Alternaria alternata

    Get PDF
    Tomato, Solanum lycopersicum is one of the most important vegetable crops consumed in Algeria. Tomato crops are often infected by Alternaria alternata, which causes early blight disease. Chemical pesticides are intensively used to protect this plant, which lead to environmental pollution that might endanger animal and human health. The main objective of this study is to select potential biocontrol agents from arid soil as an alternative to chemical products. The phytopathogenic fungus which was isolated from infested tomato leaves, stems and fruits cultured in Constantine-Algeria, was identified as Alternaria cf. alternata. Thirty five bacteria isolates were obtained from arid soil in the south of Algeria. Three of the isolates inhibited the growth of A. alternata. However, the most potent isolate, E1B3 reached a 75% inhibition rate. The molecular identification of this isolate showed that it was closely related to Bacillus mojavensis (KC977492). This strain does not produce chitinase, but does produce lipase, protease and lipopeptides. The interaction between A. alternata and B. mojavensis was investigated for the first time in this work by flow cytometric analysis. In conclusion, B. mojavensis strain was antagonistic to A. alternata which could possibly be exploited as a biopesticide in tomato crops management.Keywords: Tomato, Bacillus mojavensis, early blight, Alternaria alternata, flow cytometr

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Kinetic models and parameters estimation study of biomass and ethanol production from inulin by Pichia caribbica (KC977491)

    Get PDF
    The growth kinetics and modeling of ethanol production from inulin by Pichia caribbica (KC977491) were studied in a batch system. Unstructured models were proposed using the logistic equation for growth, the Luedeking-Piret equation for ethanol production and modified Leudeking-Piret model for substrate consumption. Kinetic parameters (X0, μm, m, n, p and q) were determined by nonlinear regression, using Levenberg-Marquart method implemented in a Mathcad program. Since the production of ethanol was associated with P. caribbica cell growth, a good agreement between model predictions and experimental data was obtained. Indeed, significant R2 values of 0.91, 0.96, and 0.95 were observed for biomass, ethanol production and substrate consumption, respectively. Furthermore, analysis of variance (ANOVA) was also used to validate the proposed models. According to the obtained results, the predicted kinetic values and experimental data agreed well . Finally, it is possible to predict the development of P. caribbica using these models.Key words: Pichia caribbica, inulin, bioethanol, numerical simulation

    Optimization of Baker’s Yeast Production on Date Extract Using Response Surface Methodology (RSM)

    No full text
    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R2 = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model (R2 = 0.981). The values of kinetic parameters (Ks, Xm, μm, p and q) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (−9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data

    Characterization of New Fengycin Cyclic Lipopeptide Variants Produced by Bacillus amyloliquefaciens (ET) Originating from a Salt Lake of Eastern Algeria.

    Full text link
    Fengycin antibiotic displays a strong antifungal activity and inhibits the growth of a wide range of plant pathogens especially filamentous fungi. The main objective of the present study is to characterize fengycin variants produced by B. amyloliquefaciens strain (ET). LC-MS analysis of fengycin extracts has shown several molecular ion peaks corresponding to conventional fengycin homologues (MH + : m/z 1463.9; 1491.9; 1506) and some new ones (MH + : m/z 1433; 1447; 1461; and 1477). Further characterization of these precursor ions was carried out by LC-MS.MS analysis. Reporter fragment ions were observed (named A and B), they correspond to the cleavage of Orn2-Tyr3 (A), Glu1-Orn2 (B), and used for identifying fengycin variants. The reporter fragment couple ions [A/B] at [m/z 966.5/1080.5] and [m/z 994.4 /1108.5] represent fengycin A and B, respectively. The diagnostic ions at ([m/z 980/1094]) may correspond to fengycin C3, D, S or B2. Interestingly, unknown diagnostic product ions at [m/z 951/1065] and [m/z 979/1093] were detected for the first time in this study which prove that they correspond to new fengycin variants, named fengycin X and fengycin Y, respectively. The fengycin X results from a substitution of the glutamine amino acid (Q), at position 8 of the fengycin A peptide part, by an isoleucine (I) or a leucine (L) residue. This mutation should be the same in fengycin Y but compared to fengycin B

    In Vitro and In Vivo Characterization of Plant Growth Promoting Bacillus Strains Isolated from Extreme Environments of Eastern Algeria.

    Full text link
    This report is to our knowledge the first to study plant growth promotion and biocontrol characteristics of Bacillus isolates from extreme environments of Eastern Algeria. Seven isolates of 14 (50 %) were screened for their ability to inhibit growth of some phytopathogenic fungi on PDA and some roots exudates. The bacteria identification based on 16S r-RNA and gyrase-A gene sequence analysis showed that 71 % of the screened isolates belonged to Bacillus amyloliquefaciens and the rest were closely related to B. atrophaeus and B. mojavensis. Most of them had high spore yields (22 x 108-27 x 108 spores/ml). They produced protease and cellulase cell wall-degrading enzymes while the chitinase activity was only observed in the B. atrophaeus (6SEL). A wide variety of lipopeptides homologous was detected by liquid chromatography-electrospray ionization-mass spectrometry analysis. Interestingly, some additional peaks with new masses were characterized, which may correspond to new fengycin classes. The isolates produced siderophores and indole-3- acetic acid phytohormone. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. atrophaeus (6SEL) significantly increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05). These results suggest that these isolates may be used further as bio-inoculants to improve crop systems
    corecore